• Title/Summary/Keyword: high strength R/C column

Search Result 44, Processing Time 0.025 seconds

Behavior of High Strength Reinforced Concrete Wide Beam-Column Joint with Slab (슬래브가 있는 고강도 철근 콘크리트 넓은 보-기둥 접합부의 거동)

  • 최종인;안종문;신성우;박성식;이범식;양지수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.493-498
    • /
    • 2002
  • An experimental investigation was conducted to study the behavior of high-strength RC wide beam-column joints with slab subjected to reversed cyclic loads under constant axial load. Six half scale interior wide beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including three specimens without slab and three specimens with slab. The primary variables were compressive strength of concrete( $f_{ck}$ =240, 500kgf/c $m^2$), the ratio of the column-to-beam flexural capacity( $M_{r}$=2$\Sigma$ $M_{c}$$\Sigma$ $M_{b}$ ; 0.77-2.26), extended length of the column concrete($\ell$$_{d}$ ; 0, 9.6, 30cm), ratio of the column-to-beam width(b/H ; 1.54, 1.67). Test results are shown that (1) the behavior of specimen using high-strength concrete satisfied the required minimum ductile capacity according to increase the compressive strength, (2). In the design of the wide beam-column joints, one should be consider the effects of slab stiffness which is ignored in the current design code and practice.ice.e.e.

  • PDF

An innovative solution for strengthening of old R/C structures and for improving the FRP strengthening method

  • Tsonos, Alexander G.
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.3
    • /
    • pp.323-338
    • /
    • 2014
  • In this study a new innovative method of earthquake-resistant strengthening of reinforced concrete structures is presented for the first time. Strengthening according to this new method consists of the construction of steel fiber ultra-high-strength concrete jackets without conventional reinforcement which is usually applied in the construction of conventional reinforced concrete jackets. An innovative solution is proposed also for the first time that ensures a satisfactory seismic performance of existing reinforced concrete structures, strengthened by using composite materials. The weak point of the use of such materials in repairing and strengthening of old R/C structures is the area of beam-column joints. According to the proposed solution, the joints can be strengthened with a steel fiber ultra-high-strength concrete jacket, while strengthening of columns can be achieved by using CFRPs. The experimental results showed that the performance of the subassemblage strengthened with the proposed mixed solution was much better than that of the subassemblage retrofitted completely with CFRPs.

A Evaluation on the Field Application of High Strength Concrete for CFT Column (고강도 CFT용 콘크리트의 현장적용성 평가 및 장기거동 예측)

  • Park, Je Young;Chung, Kyung Soo;Kim, Woo Jae;Lee, Jong In;Kim, Yong Min
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.707-714
    • /
    • 2014
  • CFT (Concrete-Filled Tube) is a type of steel column comprised of steel tube and concrete. Steel tube holds concrete and the concrete inside tube takes charge of compressive load. This study presents structural performance of the CFT column which has 73~100 MPa high strength concrete inside. Fluidity, mechanical compression, pump pressure test in flexible pipe were conducted for understanding properties of the high strength concrete. Material properties were achieved by various experimental tests, such as slump, slump flow, air content, U-box, O-Lot, L-flow. In addition, mock-up tests were conducted to monitor concrete filling, hydration heat, compressive strength. From construction sites in Sang-am dong and University of Seo-kang, long-term behaviors could be effectively predicted in terms of ACI 209 material model considering elastic deformation, shrinkage and creep.

The Structural Behavior of $700kg/cm^2$ High Strength Concrete Frames Considering Extension Distances at Joints (내민길이를 고려한 $700kg/cm^2$ 고강도 콘크리트 골조의 구조적거동)

  • 신성우;안종문;윤영수;이승훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.140-148
    • /
    • 1994
  • RCI 318-8!4 recommends that when the specified cornpresslve strength of concrete In a column is greater than 1.4 times thdt spec~f~ed for a floor svsttm. top surface of the colunm concrete shall extend 2ft(600mm) into the slab from the face of colurnn to avoid unexpected brittle failure. Six test specimens were cast arid tested on 2/3 scale frame specmiens havlng different extension distances and compressive strength of concrete as the major variables. The paper discusses the performance of the frames in terms of ductility and also presents the assessment of the ACI 318-89 provisions.The test results showed that the ductility index were incrrased with increasing of compressive strength of concrete and extension distance. And top surface of the column concrete should extend 2h(h overall depth of beam) into the beam from the face of the column to avoid unexpected brittle failure in frame.

Comparison on the Failure Mechanism of Punching Shear in the Reinforced Concrete (철근 콘크리트의 뚫림전단 파괴메카니즘에 과한 비교)

  • 이주나;연규원;이호준;박찬수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.533-538
    • /
    • 2000
  • In R.C. flat slab system, a brittle punching failure is a very fatal problem. But there is no generally well-defined answer to the problem and there are wide differences in current practical design codes. therefore, in this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. Therefore, In this study, the factors affecting to punching failure mechanism have been studied to find out the punching shear behavior in R.C. flat slabs by comparing other investigations and practical design codes. The conclusions in this study are summarized as follows; 1) The factors affecting to punching shear are concrete strength ($f_\alpha$), ratio of column side length to slab depth (c/d), ratio of distance from column center to radial contraflexure (l/d), yield strength of steel ($f_y$), flexural reinforcement ratio ($\rho$) and size effects. 2) It is shown that th use of $\surd{f_{ck}}$in applying($f_\alpha$ to punching shear strength estimation may be more sensitive in high concrete strength. 3) The effects of l/d, ($f_y$, size are no clear in the punching failure mechanism, so in the future, it should be investigated with the effects of various composed load.

  • PDF

A Study on the Flexural Behavior of R.C Columns Confined by Lateral Ties (띠철근으로 구속된 철근 콘크리트 기둥의 휨 거동에 관한 연구)

  • 조세용;양근혁;이영호;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.10a
    • /
    • pp.601-604
    • /
    • 1999
  • The objective of this study is to investigate the flexural behavior of reinforced concrete columns confined by lateral ties. This test was carried on the twelve reinforced concrete columns, 200$\times$200$\times$800mm size. objected to flexure and constant axial loads. The main variables are concrete strength, the configuration of lateral ties and the amount of lateral ties. Test results indicated that steel configuration plays an important role in column behavior, and a proper configuration of lateral ties can be more ductile than the reduce of the space of lateral ties. By this experiment, the ductility of high-strength concrete columns designed on A.C.I Code is not adequate, and are concluded that the design of high-strength concrete column is executed by more lateral ties under high axial loads.

  • PDF

Axial Compressive Behavior of the R/C Short Columns Strengthened with CFS (탄소섬유쉬트로 횡보강된 R/C단주의 압축거동)

  • Shin, Sung-Woo;Bahn, Byong-Youl;Lee, Kwang-Soo;Ahn, Jong-Moon;Hwang, Jun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.2 no.4
    • /
    • pp.201-208
    • /
    • 1998
  • To observe the confinement effects of Carbon Fiber Sheet(CFS) on the high-strength R/C short columns, Fifteen specimens with CFS were manufactured and tested under uni-axial compressive load. Major variables of this study are amount, spacing, type of CFS and amount of transverse steel. Increasing the amount of transverse steel and CFS, compressive strength and axial rigidity is improved. R/C columns with transverse steel and CFS exhibited less axial stress than columns with only CFS. From the test results, it is shown that the area confined with transverse steel and CFS is considerably important to evaluate axial stress of R/C short columns.

  • PDF

A Study on Flexural Behavior of R.C. Columns with the configuration of Lateral Ties (띠철근 기근 형태에 따른 철근콘크리트 기둥의 휨 거동 에 관한 연구)

  • 조세용;양근혁;이영호;정헌수
    • Journal of the Korea Concrete Institute
    • /
    • v.12 no.1
    • /
    • pp.53-60
    • /
    • 2000
  • The objective of this study is to investigate the flexural behavior of reinforced concrete columns confined by lateral ties. This test was carried on the twelve reinforced concrete columns subjected to lateral and constant axial loads. The main experimental variables are concrete strength, the configuration of lateral ties, and the amount of lateral ties. Test results indicated that the steel configuration in column sections plays an important role in column behavior, and a proper configuration of lateral ties can obtain more ductile by the reduction of the space of lateral ties. Also, this experiment show that the utlization of high-strength concrete in columns properly designed on ACI Code takes less ductile. Therefore, we can conclude that the design of high-strength concrete columns under high axial loads requires more lateral ties than ACI Code.

Suggestion of the Prediction Model for Material Properties and Creep of 60~80MPa Grade High Strength Concrete (설계기준강도 60~80MPa급 고강도콘크리트의 재료 특성 및 크리프 예측모델식 제안)

  • Moon, Hyung-Jae;Koo, Kyung-Mo;Kim, Hong-Seop;Seok, Won-Kyun;Lee, Byeong-Goo;Kim, Gyu-Yong
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.6
    • /
    • pp.517-525
    • /
    • 2018
  • The construction of super tall building which structure is RC and must be certainly considered on column shortening estimation and construction reflected concrete creep has been increased. Regarding the Fck 60~80MPa grade high strength concrete applied in the domestic super tall building project, the mechanical properties and creep deflection according to curing conditions(Drying creep/Basic creep) were reviewed in this research. Results of compressive strength and elastic modulus under sealed curing condition were 5% higher than unsealed condition and difference of results according to the curing condition was increased over time. Autogenous and drying shrinkage tendency showed adversely in the case of high strength concrete. Additionally, creep modulus under unseal curing condition was evaluated 2~3 times higher than sealed condition. Modified model of ACI-209 based on test result was applied to estimate long period shortening of vertical members(such as Core Wall/Mega Column) exactly, it is designed to modify and suggest the optimal creep model based on various data accumulated during construction, in the future.

Study of Inelastic Responses of a 1:12 Scale 10-Story R.C. Frame-Wall Structure (1:12축소 10층 R.C. 골조-벽식 구조의 비선형 거동 연구)

  • 이한선;김상호;유은진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.867-872
    • /
    • 2000
  • A 1:12 scale 10-story RC building structure was constructed and the experiment was performed. The test results are presented and compared with the results of the analysis conducted with DRAIN-2DX. It is concluded that some local deformations cannot be described reasonably with the wall model using only Plastic Hinge Beam-Column Element(TYPE02) in DRAIN-2DX whereas the strength and stiffness of the whole structure can be predicted with high reliability.