• Title/Summary/Keyword: high strain zone

Search Result 142, Processing Time 0.043 seconds

The Characteristics of Microstructure in the Semi-solid State of SKH51 at High Frequency Induction Heating (유도가열에 따른 SKH51의 반응고 미세조직 특성 연구)

  • Lee, Sang Yong
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.25 no.3
    • /
    • pp.126-133
    • /
    • 2012
  • Semi-solid forming of the high melting point alloys such as steel is a promising near-net shape forming process for decreasing manufacturing costs and increasing the quality of the final products. This paper presents the microstructure characteristics of SKH51 (high speed tool steel) during heating and holding in the mushy zone between $1233^{\circ}C$ and $1453^{\circ}C$, which has been measured by differential scanning calorimetry (DSC). The results of heating/holding experiments showed that the grain size and the liquid fraction increased gradually with temperature up to $1350^{\circ}C$. The drastic grain growth occurred at heating above $1380^{\circ}C$. The strain-induced melt-activated (SIMA) process has been applied to obtain globular grains in the billet materials. Working by mechanical upsetting and successive heating of SKH51 into the temperatures in the mushy zone resulted in globular grains due to recrystallization and partial melting.

Development of High Efficient Enzymatic Deinking Agent by Microorganism(I) -Isolation and Screening of Bacteria Producing Cellulase and Xylanase- (미생물 효소를 이용한 고효율 효소 탈묵제의 개발(제1보) -Cellulase와 Xylanase를 생산하는 Bacteria의 분리 및 선발-)

  • 박성철;강진하;이양수
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.35 no.1
    • /
    • pp.34-40
    • /
    • 2003
  • This study was carried out to select the useful bacteria which secret extracellula enzymes for enzymatic deinking agent of old newspaper. CMCase, FPase and xylanase activities of the bacteria liquid culture were measured at optimal growth conditions. Clear zone test was checked on the solid culture. The results of this study were as follow: Eight strains of 28 bacteria isolated from a paper mill soil ground were shown strong CMCase and xylanase activity with the clear zone test. The optimal pH and temperature for culture growth were 6~8 and 26~$34^{\circ}C$, respectively and optimal culture period were less than 60 hours. Based on CMCase, FPase and xylanase activity, strain No. 18, 21, 22 and 28 which were relatively higher than the other strains, were selected for further enzymatic deinking research.

Microstructures and characteristics of friction stir welded 304 stainless steel (304 스테인레스강 FSW부의 조직 및 특성)

  • ;Yutaka S. Sato;Hiroyuki Kokawa;Kazutaka Okamoto;Satoshi Hirano;Masahisa Inagaki
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.156-158
    • /
    • 2004
  • The microstructural evolution in a 304 stainless steel weld during FSW was examined. The SZ and TMAZ showed typical dynamically recrystallized and recovered microstructures, respectively, The microstructural observation revealed that sigma phase was formed at the advancing side of the stir zone. A possibility was suggested that the rapid formation of the sigma phase is related to the transformation of austenite to delta-ferrite in the stir zone, from introduction of high strain and dynamic recrystallization during FSW.

  • PDF

Residual Stress Measurement of Flat Welded Specimen by Electronic Speckle Pattern Interferometry (전자처리스페클패턴 간섭법을 이용한 평판 용접시험편의 잔류응력 측정)

  • Chang, Ho-Seob;Kim, Dong-Soo;Jung, Hyun-Chul;Kim, Kyung-Suk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.149-154
    • /
    • 2012
  • The size and distribution of welding residual stress and welding deformation in welding structures have an effect on various sorts of damage like brittle failure, fatigue failure and stress corrosion cracking. So, research for this problem is necessary continuously. In this study, non-destructive technique using laser electronic speckle pattern interferometry, plate of welding specimen according to the external load on the entire behavior of residual stress are presented measurement techniques. Once, welding specimen force tensile loading, using electronic speckle pattern interferometry is measured. welding specimen of base metal and weld zone measure strain from measured result, this using measure elastic modulus. In this study, electronic speckle pattern interferometry use weld zone and base metal parts of the strain differences using were presented in residual stress calculated value, This residual stress value were calculated by numerical calculation. Consequently, weld zone of modulus high approximately 3.7 fold beside base metal and this measured approximately 8.46 MPa.

Implications of yield penetration on confinement requirements of r.c. wall elements

  • Tastani, Souzana P.;Pantazopoulou, Stavroula J.
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.831-849
    • /
    • 2015
  • Seismic-design procedures for walls require that the confinement in the critical (plastic hinge) regions should extend over a length in the compression zone of the cross section at the wall base where concrete strains in the Ultimate Limit State (ULS) exceed the limit of 0.0035. In a performance-based framework, confinement is linked to required curvature ductility so that the drift demand at the performance point of the structure for the design earthquake may be met. However, performance of flexural walls in the recent earthquakes in Chile (2010) and Christchurch (2011) indicates that the actual compression strains in the critical regions of many structural walls were higher than estimated, being responsible for several of the reported failures by toe crushing. In this study, the method of estimating the confined region and magnitude of compression strain demands in slender walls are revisited. The objective is to account for a newly identified kinematic interaction between the normal strains that arise in the compression zone, and the lumped rotations that occur at the other end of the wall base due to penetration of bar tension yielding into the supporting anchorage. Design charts estimating the amount of yield penetration in terms of the resulting lumped rotation at the wall base are used to quantify the increased demands for compression strain in the critical section. The estimated strain increase may exceed by more than 30% the base value estimated from the existing design expressions, which explains the frequently reported occurrence of toe crushing even in well confined slender walls under high drift demands. Example cases are included in the presentation to illustrate the behavioral parametric trends and implications in seismic design of walls.

A Study on Hot Straining Embrittlement of Coarse Grained HAZ in Steel Weldments (강 용접열영향부 조립역의 열변형취화에 관한 연구)

  • 정세희;김태영;임재규
    • Journal of Welding and Joining
    • /
    • v.3 no.1
    • /
    • pp.22-31
    • /
    • 1985
  • Hot straining embrittlement is one of the most important factors which cause the brittle fracture initiation even in the service temperature in the case of mild steel and high tensile steel. Therefore it is necessary to analyze thoroughly the hot straining embrittlement occurred in weld HAZ of the structural steels. The behaviors of plastic deformation and fracture toughness at the notch tip of the hot strained weld HAZ in structural steels (SB 41 KS, SA 588-Grade A ASTM) have been studied by the recrystallization technique and crack opening displacement (COD) test method. The obtained results are summarized as follows; 1. The plastic zone is formed at the notch tip of weld HAZ owing to nomotonic and cyclic hot stran, and the maximum plastic strain increases with the accumulated hot straining amounts. 2. The distribution of the effective strain at the plastic deformed zone in HAZ can be determined as follows; (.epsilon. over bar $_{p}$ )$_{\chi}$=.epsilon. over bar $_{cr}$ ( $R_{/chi}$/.chi.)$^{m}$ where, .epsilon. over bar $_{cr}$ : (SB 41; .epsilon. over bar $_{cr}$ = 0.2, SA 588; .epsilon. over bar $_{cr}$ = 0.1) 3. The embrittlement of weld HAZ in SB 41 and SA 588 is influenced by hot strain, and the degree of embrittlement becomes deeper with hot straining amounts. 4. The embrittlement of weld HAZ of SB 41 is not influenced by the hot straining amounts until .epsilon. over bar $_{max}$ = 0.36, $R_{\chi}$ = 0.065mm, however the embrittlement of structure in SA 588 is considerably influenced even by a small quantity of the hot straining amounts.s.

  • PDF

Collapse Analysis of Ultimate Strength for the Aluminium Stiffened Plate subjected to Compressive Load (알루미늄 보강판의 압축 최종강도 붕괴 해석)

  • Park, Joo-Shin;Ko, Jae-Yong;Kim, Yun-Young
    • Journal of Navigation and Port Research
    • /
    • v.31 no.10
    • /
    • pp.825-831
    • /
    • 2007
  • The use of high-strength aluminum alloys for ship and offshore structure generally has many benefits compared to the structural steels. These materials are used widely in a variety of fields, especially in the hull and deck of high speed craft, box-girder of bridges, deck and side plates of offshore structure. The structural weight can be reduced using these aluminum structure, which can enable high speed The characteristics of stress-strain relationship of aluminum structure are fairly different from the steel one, because of the influence of Heat Affected Zone(HAZ) by the welding processing. The HAZ of aluminum is much wider than that of steel with its high heat conductivity. In this paper, the ultimate strength characteristics of aluminum stiffened panel subjected to axial loading, such as the relationship between extent of HAZ and the behavior of buckling/ultimate strength, are investigated through the Finite Element Analysis with varying its range.

Case Study of Correlation between the SPT-N Value and PMT Results Performed on Weathered Granite Zone in Korea (국내 화강 풍화대 지반의 표준관입시험 N 값과 프레셔미터시험 결과의 상관관계에 대한 사례 분석)

  • Lee, Seung-Hwan;Baek, Sung-Ha;Song, Young-Woo;Chung, Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.12
    • /
    • pp.15-24
    • /
    • 2019
  • Weathered granite zone exists in most regions of Korea and it is often used as a bearing stratum of geotechnical structures. So it is very important to estimate the characteristics of weathered granite zone. SPT (Standard penetration test) is usually performed to investigate the characteristics of the weathered zone because undisturbed samples suitable for laboratory testing are hardly retrieved. PMT (Pressuremeter test) can reliably evaluate the in situ stress-strain behavior, but it is rarely conducted because of their high cost and time-consuming procedure. In this study, the correlation between the SPT-N values and the PMT results, obtained from the weathered granite zone, was analyzed. Empirical equations for pressuremeter modulus (Em) and limit pressure (PL) were suggested and compared with the previous research.

Effect if Grain Size on Plasticity of Ti$_3$SiC$_2$ (Ti$_3$SiC$_2$의 소성 변형 특성에 미치는 결정립 크기의 효과)

  • 이승건
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.8
    • /
    • pp.807-812
    • /
    • 1998
  • Mechanical properties of two types of polycrystlline {{{{ { { Ti}_{3 }SiC }_{2 } }} with different grain size were investigated. A fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} has a higher fracture strength and hardness. Plot of strength versus Vickers indentation load indicated that {{{{ { { Ti}_{3 }SiC }_{2 } }} has a high flaw tolerance. Hertzian indentation test using a spherical indenter was used to study elastic and plastic behavior in {{{{ { { Ti}_{3 }SiC }_{2 } }}. Indentation stress-strain curves of each material are made to evaluate the plasticity of {{{{ { { Ti}_{3 }SiC }_{2 } }} Both find and coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} showed high plasticity. In-dentation stress-strain curve of coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} deviated even more from an ideal elastic limit in-dicating exceptional plasticity in this material. Deformation zones were formed below the contact as well as around the contact area in both materials but the size of deformation zone in coarse grain {{{{ { { Ti}_{3 }SiC }_{2 } }} was much larger than that in fine grain {{{{ { { Ti}_{3 }SiC }_{2 } }} Intragrain slip and kink would account for high plasticity. Plastic behavior of {{{{ { { Ti}_{3 }SiC }_{2 } }} was strongly influenced by grain size.

  • PDF

The temperature condition for the mylonitization of the Cheongsan granite, Korea (변형된 청산 화강암의 압쇄암화작용시의 변형온도 - 변형된 청산 화강암의 구조 해석 -)