• Title/Summary/Keyword: high strain zone

Search Result 142, Processing Time 0.025 seconds

A Study on the Mechanical Behavior of Welded Parts in Thick Plate during Post Welding Heat Treatment (厚板熔接部의 應力除去 熱處理時의 力學的 擧動에 關한 硏究)

  • 방한서
    • Journal of Welding and Joining
    • /
    • v.11 no.4
    • /
    • pp.103-111
    • /
    • 1993
  • Recently, several high-tensile steels(e.g. 80kg and above, $2^{1/4}Cr$-1Mo)having good quality to high temperature and pressure-resistance are widely used to construct petroleum-plant and pressure vessel of heat or nuclear-power plant. However, in the steels, reheating crack at grain boundaries of the heat affected zone(HAZ) occures during post welding heat treatment(PWHT)to remove welding residual stress. In order to study theoretically the characteristics of reheating crack created by PWHT, the computer program of three-dimensional thermal-elasto-plasto-creep analysis based on finite element method are developed, and then the mechanical behavior(history of creep strain accumulation and stress relaxation, etc)of welded join in thick plate during PWTH is clarified by the numerical results.

  • PDF

A Study on the Effects of Tool Geometry on Chip Flow (공구형상이 칩유동에 미치는 영향에 관한 연구)

  • 김경우;김우순;윤주식;채왕석;김동현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.211-215
    • /
    • 2000
  • A new methodology is presented to evaluate material properties at high strain rates and high temperatures based on orthogonal metal cutting experiments and FEM simulations. Average strain rate and average temperature found in the deformation zone are computed and flow stress data at these conditions are modified until cutting forces calculated in simulations match those determined in experiments. Material properties obtained from this method were verified by additional metal cutting simulations. Derivation from cutting forces measured in experiments was less than 10%. The feasibility of tool design using FEM simulations is also demonstrated.

  • PDF

Molecular Cloning of Pseudomonas sp.Inulinase Gene and its Expresstion in E. coli (Pseudomonas sp. Inulinase 유전자의 클로닝 및 Escherichia coli에서의 발현)

  • 엄수정;권영만;최용진
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.550-555
    • /
    • 1995
  • A strain of Pseudomonas sp. isolated from soil was shown to produce a high level of extracellular endo-inulinase. In this work, the endo-inulinase gene (inu1) of the bacterial strain was cloned into the plasmid pBR322 by using EcoRI restriction endonuclease and E. coli HB101 as a host strain. One out of 7, 000 transformants obtained from the above cloning experiment formed a clear zone around its colony on the selective medium supplemented with 2.0% inulin after a prolonged incubation at 37$\circ$C and subsequent cold shock treatment. The functional clone was found to carry a recombinant plasmid (pKMG50) with a 3.7 kb genomic insert containing the genetic information for the inulinase activity. The inulinase from E. coli HB101/pKMG50 was proved to be an endo-acting enzyme and produced constitutively in the recombinant E. coli cells. Zymogram of the enzyme from the recombinant cells with inulin substrate indicated that the molecular mass of the active protein was 190 Kd, while that of the endo-inulinase from the Pseudomonas strain was 170 Kd. This size discrepancy suggested that the inulinase from the recombinant E. coli HB101 cells might be the initial product of translation, not the mature form produced in the strain of Pseudomonas sp..

  • PDF

A Study on Fracture Behavior in Shear Band during Micro Hole Punching Process (미세 홀 펀칭시 전단 파괴 거동 연구)

  • 유준환;임성한;주병윤;오수익
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2003.05a
    • /
    • pp.230-235
    • /
    • 2003
  • In the micro hole punching, the size and shape of burr and burnish zone are very important factors to evaluate quality of micro holes which depend on punch-die clearance, stain rate, workpiece material and etc. To get micro holes with small burr and wide burnish zone for industrial demands, not only the parametric study but also a study on fracture behavior in shear band are necessary. In this study, 100 $\mu\textrm{m}$, 25 $\mu\textrm{m}$ micro holes in diameter were fabricated on brass (Cu63/Zn37) and SUS 316 foils as aspect ratio 1:1, and the characteristics of micro holes was investigated comparing with man holes over several mm by scanning electron microscopic views and section views. Like macro hole, micro hole is also composed of 4 portions, rollover, burnish zone, fracture zone and it shows similar fracture behavior in shear band, but? by high strain rate (10$^2$∼ 10$^3$s$\^$-1/) unlike macro hole fabrication and increment of relative grain size several different results are shown.

  • PDF

Genomic Diversity of Helicobacter pylori

  • Lee, Woo-Kon;Choi, Sang-Haeng;Park, Seong-Gyu;Choi, Yeo-Jeong;Choe, Mi-Young;Park, Jeong-Won;Jung, Sun-Ae;Byun, Eun-Young;Song, Jae-Young;Jung, Tae-Sung;Lee, Byung-Sang;Baik, Seung-Chul;Cho, Myung-Je
    • The Journal of the Korean Society for Microbiology
    • /
    • v.34 no.6
    • /
    • pp.519-532
    • /
    • 1999
  • Helicobacter pylori is a causative agent of type B gastritis and plays a central role in the pathogenesis of gastroduodenal ulcer and gastric cancer. To elucidate the host-parasite relationship of the H. pylori infection on the basis of molecular biology, we tried to evaluate the genomic diversity of H. pylori. An ordered overlapping bacterial artificial chromosome (BAC) library of a Korean isolate, H. pylori 51 was constructed to set up a genomic map. A circular physical map was constructed by aligning ApaI, NotI and SfiI-digested chromosomal DNA. When the physical map of H. pylori 51 was compared to that of unrelated strain, H. pylori 26695, completely different restriction patterns were shown. Fifteen known genes were mapped on the chromosome of H. pylori 51 and the genetic map was compared with those of strain 26695 and J99, of which the entire genomic sequences were reported. There were some variability in the gene location as well as gene order among three strains. For further analysis on the genomic diversity of H. pylori, when comparing the genomic structure of 150 H. pylori Korean isolates with one another, genomic macrodiversity of H. pylori was characterized by several features: whether or not susceptible to restriction digestion of the chromsome, variation in chromosomal restriction fingerprint and/or high frequency of gene rearrangement. We also examined the extent of allelic variation in nucleotide or deduced amino acid sequences at the individual gene level. fucT, cagA and vacA were confirmed to carry regions of high variation in nucleotide sequence among strains. The plasticity zone and strain-specific genes of H. pylori 51 were analyzed and compared with the former two genomic sequences. It should be noted that the H. pylori 51-specific sequences were dispersed on the chromosome, not congregated in the plasticity zone unlike J99- or 26695-specific genes, suggesting the high frequency of gene rearrangement in H. pylori genome. The genome of H. pylori 51 shows differences in the overall genomic organization, gene order, and even in the nucleotide sequences among the H. pylori strains, which are far greater than the differences reported on the genomic diversity of H. pylori.

  • PDF

The Effects of Heat Treatment on the Fatigue Life and Welding Residual Stress of Welded Carbon Steel Plates (탄소강 후판용접부의 피로수명 및 잔류응력에 미치는 열처리 영향)

  • An, I.T.;Kim, W.T.;Jo, J.R.;Moon, Y.H.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.16 no.3
    • /
    • pp.141-147
    • /
    • 2003
  • The effects of heat treatment on the fatigue life and welding residual stress of welded plates were investigated in this study. The plates were welded by flux cored arc welding process, and post weld heat treated at $600^{\circ}C$ for 1 hour. The residual stresses of welded plates before and after post weld heat treatment were measured by hole drilling method. To measure the fatigue life of welded plates, low cycle fatigue tests under strain control and high cycle fatigue tests under load control were performed respectively, by using cylindrical specimens containing weld metal and heat affected zone. The obtained result shows that the post weld heat treatment reduces the residual stress, and resultantly changes the fatigue life of welded plate. Goodman diagrammatic analysis has also been performed to study the effect of post weld heat treatment on the high cycle fatigue life.

Simulation study on effects of loading rate on uniaxial compression failure of composite rock-coal layer

  • Chen, Shao J.;Yin, Da W.;Jiang, N.;Wang, F.;Guo, Wei J.
    • Geomechanics and Engineering
    • /
    • v.17 no.4
    • /
    • pp.333-342
    • /
    • 2019
  • Geological dynamic hazards during coal mining can be caused by the failure of a composite system consisting of roof rock and coal layers, subject to different loading rates due to different advancing velocities in the working face. In this paper, the uniaxial compression test simulations on the composite rock-coal layers were performed using $PFC^{2D}$ software and especially the effects of loading rate on the stress-strain behavior, strength characteristics and crack nucleation, propagation and coalescence in a composite layer were analyzed. In addition, considering the composite layer, the mechanisms for the advanced bore decompression in coal to prevent the geological dynamic hazards at a rapid advancing velocity of working face were explored. The uniaxial compressive strength and peak strain are found to increase with the increase of loading rate. After post-peak point, the stress-strain curve shows a steep stepped drop at a low loading rate, while the stress-strain curve exhibits a slowly progressive decrease at a high loading rate. The cracking mainly occurs within coal, and no apparent cracking is observed for rock. While at a high loading rate, the rock near the bedding plane is damaged by rapid crack propagation in coal. The cracking pattern is not a single shear zone, but exhibits as two simultaneously propagating shear zones in a "X" shape. Following this, the coal breaks into many pieces and the fragment size and number increase with loading rate. Whereas a low loading rate promotes the development of tensile crack, the failure pattern shows a V-shaped hybrid shear and tensile failure. The shear failure becomes dominant with an increasing loading rate. Meanwhile, with the increase of loading rate, the width of the main shear failure zone increases. Moreover, the advanced bore decompression changes the physical property and energy accumulation conditions of the composite layer, which increases the strain energy dissipation, and the occurrence possibility of geological dynamic hazards is reduced at a rapid advancing velocity of working face.

Flexural Resistance and Ductility Ratio of Composite Hybrid I-Girder using HSB High Performance Steel in Positive Bending (HSB 고성능 강재를 적용한 강합성 I-거더 정모멘트에 대한 휨저항강도 및 연성비)

  • Choi, Dong Ho;Lim, Ji Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.205-217
    • /
    • 2014
  • In this study, flexural strength and ductility requirements of composite hybrid steel I-girder with its HSB(high performance steel for bridge) applied to tension flanges are examined in positive bending. In AASHTO LRFD specification, flexural strength and ductility requirements of composite I-girder in positive bending are specified in terms of plastic moment and plastic neutral axis that are derived from plastic behavior of conventional steel. However, plastic zone cannot be defined clearly from the stress-strain behavior of HSB unlike the behavior of conventional steel. Therefore, through idealized stress-strain curves of HSB, the plastic moment of composite hybrid steel I-girder with its HSB applied to tension flanges is defined by assuming the plastic zone of HSB. By using the consequences of numerical analysis regarding arbitrary cross-sections that have various dimensions, ductility requirements and flexural strength of composite hybrid I-girder with its HSB applied to tension flange are proposed.

Theoretical and Microstructural Study on the Temperature Dependence of Superplastic Deformation Behavior (초소성변형거동의 온도의존성에 대한 이론 및 실험적 고찰)

  • 방원규;장영원
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1997.10a
    • /
    • pp.228-231
    • /
    • 1997
  • A series of load relaxation tests was performed to determine stress-strain rate curves at high temperatures. Constitutive parameters of GBS and GMD were evaluated from the curves using the recently proposed inelastic deformation theory. Tensile tests and Microsturcture investigations showed deformation behavior as the relaxation test results predicted.

  • PDF

Numerical calculation and test of the composite materials under dynamic loading

  • Liu, Fei;Li, Lianghui
    • Steel and Composite Structures
    • /
    • v.38 no.1
    • /
    • pp.79-86
    • /
    • 2021
  • Due to the complex geological conditions, a large number of high quality coal seams was buried in the western of China which cannot be mining in open-pit methods. The dynamic properties of that coal cannot be studied easily in real site for the complex working condition. The compound coal blocks made on the basis of the real situation were studied in the laboratory. The physical and mechanical properties of the compound coal blocks and the raw coal were contrasted by using the UCS tests. The results show that the compound coal blocks made by mixing coal powder, cement and water in proportion of 2.5:2:1 are the closest to that of standard raw coal. Then the propagation of strain waves and crushing effects on the coal were studied in the compound coal blocks by using the super dynamic strain test system and the numerical calculated method of ANSYS/LS-DYNA. The results show that the diameter of the crushing zone in the compound coal blocks was similar to that in the numerical results. The fractures distribution in laboratory tests also has a similar trend to the calculation results. The measured strain waves at the distance of 50 cm, 100 cm, and 150 cm from the center of the charge are mainly concerned at -1.0×104 με and have a similar trend as that in the numerical simulation.