• Title/Summary/Keyword: high speed visualization

Search Result 277, Processing Time 0.025 seconds

Visualization of Flow inside the Side Channel Type Regenerative Blower (사이드 채널형 재생블로워의 내부 유동 가시화)

  • Yang, Hyeonmo;Lee, Kyoung-Yong;Choi, Youngseok;Jeong, Kyungseok
    • The KSFM Journal of Fluid Machinery
    • /
    • v.16 no.5
    • /
    • pp.24-28
    • /
    • 2013
  • Visualization of internal flow of a regenerative blower has been made by injecting a tracer directly into the flow. For the convenience of visualization, working fluid has been replaced by water and marbling color oil has been used as a tracer. Oil droplet has been injected near the inlet of the blower and the streak has been recorded using a high speed camera with the illumination of high power light sources. At first, droplets have irregular motion in the near inlet area and enter into a groove of the impeller. Then the droplets circulate inside the groove while translated by the rotational motion of the impeller. When the droplets get out of the impeller groove, their speed is lower than that of impeller. And the droplets repeatedly enter into the groove and circulate inside the grooves. Then the droplets either flow to the outlet or reenter into the inlet area through stripper. Through this experimental study, internally circulating motion of the flow inside a regenerative blower has been characterized.

Visualization of rupturing of rotating films (회전 원판 위 액막 유동 찢김 가시화)

  • Dong Ju Kim;Daegyoum Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.22 no.1
    • /
    • pp.28-33
    • /
    • 2024
  • We visualized the rupturing of liquid films flowing over a disk rotating with large angular velocity. A setup of high speed imaging for liquid flows on dark and reflective surfaces are suggested. From the result, rivulet structures are revealed to be strongly governed by three-dimensional surface structures developed in the film flow. Additionally, unique flow structures including the rivulet sliding and internal meandering are investigated. Generation mechanism of such structures are discussed in terms of the dynamic contact angle theory.

High-speed angular-scan pulse-echo ultrasonic propagation imager for in situ non-destructive evaluation

  • Abbas, Syed H.;Lee, Jung-Ryul
    • Smart Structures and Systems
    • /
    • v.22 no.2
    • /
    • pp.223-230
    • /
    • 2018
  • This study examines a non-contact laser scanning-based ultrasound system, called an angular scan pulse-echo ultrasonic propagation imager (A-PE-UPI), that uses coincided laser beams for ultrasonic sensing and generation. A laser Doppler vibrometer is used for sensing, while a diode pumped solid state (DPSS) Q-switched laser is used for generation of thermoelastic waves. A high-speed raster scanning of up to 10-kHz is achieved using a galvano-motorized mirror scanner that allows for coincided sensing and for the generation beam to perform two-dimensional scanning without causing any harm to the surface under inspection. This process allows for the visualization of longitudinal wave propagation through-the-thickness. A pulse-echo ultrasonic wave propagation imaging algorithm (PE-UWPI) is used for on-the-fly damage visualization of the structure. The presented system is very effective for high-speed, localized, non-contact, and non-destructive inspection of aerospace structures. The system is tested on an aluminum honeycomb sandwich with disbonds and a carbon fiber-reinforced plastic (CFRP) honeycomb sandwich with a layer overlap. Inspection is performed at a 10-kHz scanning speed that takes 16 seconds to scan a $100{\times}100mm^2$ area with a scan interval of 0.25 mm. Finally, a comparison is presented between angular-scanning and a linear-scanning-based pulse-echo UPI system. The results show that the proposed system can successfully visualize defects in the inspected specimens.

Measurement of turbulent jet flow using dynamic PIV technique (Dynamic PIV를 이용한 난류 제트유동 해석)

  • Lee Sang-Joon;Jang Young-Gil;Kim Seok
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2005.12a
    • /
    • pp.36-39
    • /
    • 2005
  • Information on temporal evolution of whole velocity fields is essential for physical understanding of a complicated turbulent flow and was obtainable using dynamic PIV because of advances of high-speed imaging technique, laser and electronics. A dynamic PIV systme consists of a high-speed CMOS camera having $1K\times1K$ pixels resolution at 1 KHz and a high-repetition Nd:Yag pulse laser. In order to validate its performance, the dynamic PIV system was applied to a turbulent jet whose Reynolds number is about 3000. The particle images of $1024\times512$ pixels were captured at a sampling rate of 4 KHz. The dynamic PIV system measured successfully the temporal evolution of instantaneous velocity fields of the turbulent jet, from which spectral analysis of turbulent structure was also feasible.

  • PDF

Bouncing Phenomena of Micro-droplet Train in Inkjet Printing (잉크젯 프린팅에서 발생하는 연속 미소 액적의 바운싱 현상)

  • Ara Jo;Hyoungsoo Kim
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.1
    • /
    • pp.26-30
    • /
    • 2023
  • Interaction of a droplet and substrate is important to determine the coating and final deposition pattern in inkjet printing system. In particular, an accurate deposition of the droplet should be guaranteed for high-resolution patterning. In this study, we performed high-speed shadowgraph experiments on droplet train impact in inkjet system. From the high-speed images, we observed an unexpected bouncing phenomenon. We have found two factors affecting bouncing regime; the Weber number and the curvature of deposited droplet. Experimental results indicate that there is a critical curvature diameter of deposited droplet, which splits into bouncing and merging regime. From this result, we obtained a power-law behavior between the Weber number and the curvature. The understanding of bouncing phenomena helps to improve the accuracy and productivity of inkjet printing.

Measurement of Liquid-Metal Flow with a Dynamic Neutron Radiography (중성자 래디오그래피를 이용한 액체금속 유동장 측정)

  • Cha, Jae-Eun;Saito, Yasushi
    • Journal of the Korean Society of Visualization
    • /
    • v.9 no.4
    • /
    • pp.63-68
    • /
    • 2011
  • The flow-field of a liquid-metal system is very important for the safety analysis and the design of the steam generator of liquid-metal fast breeder reactor. Dynamic neutron radiography (DNR) is suitable for a visualization and measurement of a liquid metal flow and a two-phase flow in a metallic duct. However, the three dimensional DNR techniques is not enough to obtain the velocity information in the wide channel up to now. In this research, a high speed DNR technique was applied to visualize the heavy liquid-metal flow field in the narrow channel with the HANARO-beam facility. The images were taken with a high frame-rate neutron radiography at 250 fps and analyzed with a Particle Image Velocimetry(PIV) method. The images were compared with the results of the commercial CFX code to study the feasibility of DNR technique for the measuring the heavy liquid-metal flow field. The PIV images could discern the turbulent vortex flow in the two-dimensional narrow channel.

Study on estimation of propeller cavitation using computer vision (컴퓨터 비전을 이용한 프로펠러 캐비테이션 평가 연구)

  • Taegoo, Lee;Ki-Seong, Kim;Ji-Woo, Hong;Byoung-Kwon, Ahn;Kyung-Jun, Lee
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.128-135
    • /
    • 2022
  • Cavitation occurs inevitably in marine propellers rotating at high speed in the water, which is a major cause of underwater radiated noise. Cavitation-induced noise from propellers rotating at a specific frequency not only reduces the sonar detection capability, but also exposes the ship's location, and it causes very fatal consequences for the survivability of the navy vessels. Therefore cavity inception speed (CIS) is one of the important factors determining the special performance of the ship. In this study, we present a method using computer vision that can detect and quantitatively estimate tip vortex cavitation on a propeller rotating at high speed. Based on the model test results performed in a large cavitation tunnel, the effectiveness of this method was verified.

Visualization Study on Kinematics of Bubble Motion in a Water Filled Cylindrical Tank (원형 탱크 내부의 기포운동에 대한 가시화 연구)

  • Kim, Sang-Moon;Jeong, Won-Taek;Kim, Kyung-Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.3
    • /
    • pp.41-48
    • /
    • 2010
  • A visualization study to evaluate bubble motion in a tab water filled cylindrical tank with a varying flow rate of compressed air is conducted. The flow rate of compressed air varies from 1 to 5 L/min. Time resolved images are acquired by a high speed camera in 10 bit gray level at 100 fps and the measurement volume is irradiated by a 230 W halogen lamp. It is observed that there are three different regions; the bubble formation region, the rising bubble region and the free surface region. During the rise of bubble, the shape is changed as if an elastic body. Based on the binarized bubble image, the mean diameters of rising bubbles are estimated at beneath of the free surface. As the gas flow rate increases, the mean diameter is increased and the rising velocity also increases with buoyancy force.

Visualization of Gas/liquid Ejector Flow and Void Fraction Measurement using Fiber Optic Probe (기체-액체 이젝터 유동의 가시화와 광섬유 탐침에 의한 기포분율 측정)

  • Choi, Sung Hwan;Ji, Ho Seong;Kim, Kyung Chun
    • Journal of the Korean Society of Visualization
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2013
  • Gas/liquid two-phase ejector is a device without moving parts, in which liquid is used to drive gas of a low-pressure source. In this paper, the hydrodynamic characteristics of a vertical down type two-phase ejector were studied using an air-water loop system. Entrained air flow rates were measured with inlet and outlet pressures of the ejector with varying water flow rate. Homogeneous bubbly flows in the discharge pipe were confirmed by the high speed flow visualization method. Quantitative measurements of void fraction were made using a newly developed fiber optic probe system.