• Title/Summary/Keyword: high speed journal bearing

Search Result 399, Processing Time 0.025 seconds

Multicriteria Optimization of Spindle Units

  • Lim Sang-Heon;Lee Choon-Man;Zverev Igor Aexeevich
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.4
    • /
    • pp.57-62
    • /
    • 2006
  • The quality of precision spindle units (S/Us) running on rolling bearings depends strongly on their structural parameters, such as the configuration and geometry of the S/U elements and bearing preloads. When S/Us are designed, their parameters should be optimized to improve the performance characteristics. However, it is practically impossible to state perfectly a general criterion function for S/U quality. Therefore, we propose to use a multicriteria optimization based on the parameter space investigation (PSI) method We demonstrate the efficiency of the proposed method using the optimization results of high-speed S/Us.

A Study on the Rotordynamic Stability of Turbo Pump Unit

  • Kwak, Hyun-Duck;Lee, Yong-Bok;Kim, Chang-Ho;Ha, Tae-Woong;Yoo, Woo-Chul
    • KSTLE International Journal
    • /
    • v.4 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • A turbo pump unit provides high pressure oxygen and fuel in a space shuttle main engine (SSME). This paper focused on rotordynamics, investigating its characteristics based on a numerical simulation of turbo pump finite element model. Speeds up to 50,000 rpm are considered, as well as the special problems related to elastic-ring, seal hydrodynamic force, shroud force and clearance-excitation farce. The rotordynamic prediction shows that the elastic-ring which is inserted between the casing and the outer race of ball bearing allows far an acceptable separate margin of first critical speed. Additionally, the results show that the floating ring seal, which have a peculiar ring, adds substantial stiffness and damping to the system as well as exhibits superior performance in terms of rotordynamic stability of system compared to the plain seal.

A Study on the Gap Estimation Circuit Design of the Magnetic Levitation System (자기 부상계의 변위추정 회로설계에 관한 연구)

  • Kim, C.H.;Ha, Y.W.;Sim, S.H.;Yang, J.H.
    • Journal of Power System Engineering
    • /
    • v.1 no.1
    • /
    • pp.144-153
    • /
    • 1997
  • The magnetic levitation system is utilized in the magnetic bearing of high-speed rotor because of little friction, no lubrication, no noise and so on. The magnetic levitation system need the feedback controller for the stabilization of system, and gap sensors are generally used to measure the gap. The use of gap sensors brings out the increase of the number of troublesome, and the decrease of the control performance because of the dislocation between the measurement point and the control point. This paper presents the design of the gap estimation circuit for the sensorless method proposed by authors in the magnetic levitation system. We made the gap estimation circuit which was composed of both the superposition circuit and the measuring circuit. And we investigated the validity of the usefulness of the proposed sensorless method in the magnetic levitation system through results of actual experiment.

  • PDF

A Study on the Design of Robust Controller of Magnetic Levitation System(II) (자기부상 시스템에 강인한 제어기 설계에 관한 연구 (II) - 실험을 중심으로 -)

  • 김창화;양주호;김영복
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.20 no.3
    • /
    • pp.144-153
    • /
    • 1996
  • The magnetic levitation system has many advantages, such as little friction, no lubrication, no noise and so on. For this reason, the magnetic levitation system is utilized in the magnetic bearing of high-speed rotor. The method to obtain magnetic force is both the repulsive suspension method and the attraction suspension method need a stabilizing controller because it is a unstable system in natural. This paper presents the design of robust stabilizing servo controller in spite of being the model uncertainties in the magnetic levitation system by $\textit{H}_{\infty}$ control theory using the free parameter. And we investigated the validity of a designed controller through results of the simulation and the actual experiment.

  • PDF

Optimal Design Techniques of the Ultra Precision Cutting Unit through using Optimized Bearing positioning and Latest Lubrication Systems (최적베어링위치결정과 최신의 윤활 시스템을 적용한 초정밀 절삭 유닛의 최적설계기술)

  • Park, Dae-Kwang;Cho, Young-Tae;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.13 no.6
    • /
    • pp.15-22
    • /
    • 2014
  • With a conventional positioning apparatus, it is very difficult simultaneously to achieve desired driving ranges and precision levels at the sub-micrometer level. Generally, a lead screw and friction drive have been used as servo control systems. These have large driving ranges, and high-speed positioning is feasible. In this study, we present a global servo system controlled by a laser interferometer acting as a displacement measurement sensor for achieving positioning accuracy at the sub-micrometer level.

Effect of Cutting Conditions on Burr Formation in Micro-drilling of A6061 (A6060의 미소 드릴링시 절삭조건이 Burr 형성에 미치는 영향)

  • Park, Dong-Sam;Choi, Jong-Soon;Kwon, Sang-Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.47-52
    • /
    • 1999
  • Theoretical and experimental studies on burr formation and deburring in many manufacturing processes have been actively pursued. Though micro-drilling has become more important in the production of precision parts such as PCB, air bearing, camera and nozzle, most studies on drilling burr formation have focused on the conventional drilling process. This paper describes burr formation process and the effect of cutting conditions such as spindle speed, feedrate and drilling depth per one step on burr formation in drilling A6061 with drills of diameter 1.0mm and 0.6mm. Experimental results showed that burr with cap were formed at relatively low feedrates, while petal burrs with several large burr fragments were formed at high feedrates. Burr height appeared to increase at the hight feedrates and lower spindle speeds. The effect of final cutting depth on burr height was negligible.

  • PDF

Evaluation of Precision Cutting Performance by Bending Vibration Made Shapes of Main Spindle (주축 진동특성을 이용한 정밀가공 성능평가)

  • Park, Bo-Yong;Kim, Jong-Gwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.3
    • /
    • pp.191-197
    • /
    • 1993
  • In this paper, experimental studies are mainly carried out for the evaluation of precision cutting performance of a machine tool spincle running at high speed with the low load, in consideration of the bending vibration characteristics. As a result a process in presented for the practical application in the machine tools industry to evaluate the cutting performance in design stage of spindles.

  • PDF

Performance Predictions of Gas Foil Thrust Bearings with Turbulent Flow (난류 유동을 갖는 가스 포일 스러스트 베어링의 성능 예측)

  • Mun, Jin Hyeok;Kim, TaeHo
    • Tribology and Lubricants
    • /
    • v.35 no.5
    • /
    • pp.300-309
    • /
    • 2019
  • Gas foil thrust bearings (GFTBs) support axial loads in oil-free, high speed rotating machinery using air or gas as a lubricant. Due to the inherent low viscosity of the lubricant, GFTBs often have super-laminar flows in the film region at operating conditions with high Reynolds numbers. This paper develops a mathematical model of a GFTB with turbulent flows and validates the model predictions against those from the literature. The pressure distribution, film thickness distribution, load carrying capacity, and power loss are predicted for both laminar and turbulent flow models and compared with each other. Predictions for an air lubricant show that the GFTB has high Reynolds numbers at the leading edge where the film thickness is large and relatively low Reynolds numbers at the trailing edge. The predicted load capacity and power loss for the turbulent flow model show little difference from those for the laminar flow model even at the highest speed of 100 krpm, because the Reynolds numbers are smaller than the critical Reynolds number. On the other hand, refrigerant (R-134a) lubricant, which has a higher density than air, had significant differences due to high Reynolds numbers in the film region, in particular, near the leading and outer edges. The predicted load capacity and power loss for the turbulent flow model are 2.1 and 2.3 times larger, respectively, than those for the laminar flow model, thus implying that the turbulent flow greatly affects the performance of the GFTB.

Tribological Behaviour of $WS_2$Solid Lubricant ($WS_2$ 고체윤활제의 마찰.마모 거동)

  • 신동우;김인섭;윤대현;김경도;김성진;정진수
    • Tribology and Lubricants
    • /
    • v.14 no.2
    • /
    • pp.35-41
    • /
    • 1998
  • The $WS_2$ solid lubricant synthesized through the vapour phase transport method was coated on the commercial bearing steel (SUJ 2) substrate, and the tribological behaviour of the lubricant was investigated using a ball-on-disk type tester. The $WS_2$ powder was spray-coated at room temperature using compressed air, and the change of friction coefficient was examined in various conditions, i.e., specimen configuration, atmosphere (air and nitrogen), applied load and rotating speed. $WS_2$ coated ball and disk showed the optimum friction coefficient of 0.07 and wear life of 45,000 cycles in the nitrogen atmosphere under 0.3 kgf and 100 rpm, whereas relatively high coefficient of 0.13 and reduced wear life of 4,000 cycles were observed in air atmosphere. The effect of rotating speed on the friction coefficient was not observed both in nitrogen and in air atmospheres. This confirmed that the spray-coated $WS_2$ solid lubricant was effective in reducing the friction coefficient and improving wear life in nitrogen atmosphere, and the oxygen and moisture existing in air could seriously deteriorate the lubrication effect of $WS_2$ coating layer.

Analysis of the Dynamic Behavior of a CNC Automatic Lathe Spindle System (CNC 자동선반 스핀들시스템의 동적 거동 해석)

  • Kim, T.J.;Koo, J.H.;Lee, S.B.;Kim, M.S.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.3
    • /
    • pp.261-267
    • /
    • 2009
  • The spindle with a built-in motor can be used to simplify the structure of machine tool system, while the rotor has unbalance mass inevitably. Therefore, it is important to recognize the effect of unbalance mass. This paper presents analysis of dynamic behavior of a high speed spindle with a built-in motor. The spindle is supported by the angular contact ball bearings and the rotor is fixed at the middle of spindle. The spindle used in CNC automatic lathe has been investigated using combined methodologies of finite elements and transfer matrices. The Houbolt method is used for the integration of the system equations and the dynamic behavior of spindle is obtained considering unbalance mass of rotor. Results show that increasing rotational speed of spindle magnifies the whirl responses of spindle seriously. Also the whirl responses of spindle are affected by the other factors such as unbalance mass and bearing stiffness.