• Title/Summary/Keyword: high speed journal bearing

Search Result 399, Processing Time 0.029 seconds

Prediction of Axial Thrust Load under Turbocharger Operating Conditions (운전 상태에서의 터보차저 축 추력 예측)

  • Lee, Inbeom;Hong, Seongki;Kim, Youngchul;Choi, Boklok
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.6
    • /
    • pp.642-648
    • /
    • 2016
  • This paper deals with an analytical and experimental investigation to predict the axial thrust load that results from turbocharger operating conditions. The Axial forces acting on the turbocharger thrust bearing are caused by the unbalance between turbine wheel gas forces and compressor wheel air forces. It has a great influence on the friction losses, which reduces the efficiency and performance of high-speed turbocharger. This paper presents the calculation procedure for the axial thrust forces under operating conditions in a turbocharger. The first step is to determine the relationship between thrust forces and strains by experimental and numerical methods. The analysis results were verified by measuring the strains on a thrust bearing with the specially designed test device. And then, the operating strains and temperatures were measured to inversely calculate the thrust strains which were compensated the thermal effects. Therefore it's possible to calculate the magnitudes of the thrust forces under operating turbocharger by comparing the regenerated strains with the rig test results. It will possible to optimize the design of a thrust bearing for reducing the mechanical friction losses using the results.

Analysis of Mean Deviation in Sliding-wear-rate of Carbon Steel with Various Pearlite Volume Fractions (탄소강의 펄라이트 분율에 따른 미끄럼 마멸속도 편차 분석)

  • Kim, M.G.;Gwon, H.;Hur, H.L.;Kim, Y.-S.
    • Transactions of Materials Processing
    • /
    • v.24 no.3
    • /
    • pp.205-211
    • /
    • 2015
  • The current investigation was performed to study sliding-wear-rate deviation (wear-rate data scatter) in carbon steels with various microstructures. Pure iron, 0.2 wt. % C steel, 0.45 wt. % C steel, and bearing steel (AISI52100) were used for the investigation. These steels possess different microstructures. Microstructures of the pure iron, two carbon steel and the bearing steel were full ferrite, ferrite + pearlite and full pearlite, respectively. Depending on the carbon content, the carbon steel had different pearlite-volume fractions. Dry sliding wear tests of the steel were conducted using a ball-on-disk wear tester at a sliding speed of 0.1 m/s using a bearing ball (AISI52100) as a counterpart. Applied load and sliding distance were 100 N and 300 m, respectively. More than three (up to twelve) tests were conducted for each steel under the same conditions, and the mean deviations in the wear rate of the steel (microstructure) were compared. The wear-rate deviation in the steel with ferrite + pearlite microstructure was higher than that with ferrite microstructure, and the deviation decreased with the increase of pearlite volume fraction. The pure iron and the bearing steel specimens showed much less deviation. The high deviation observed from the ferrite + pearlite steel was attributed to irregular subsurface-crack nucleation and growth at the interface between the two micro constituents (ferrite and pearlite) during the wear test.

Determination on the Reinforced Roadbed Thickness of Concrete Track at Embankment Section (흙쌓기 구간에서 콘크리트궤도 강화노반의 두께 결정에 관한 연구)

  • Lee, Il-Wha;Lee, Sung-Jin;Sin, Min-Ho;Hwang, Sun-Kun;Lee, Chang-Jin
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.835-843
    • /
    • 2009
  • Recently the more stable roadbed is required due to the high speed and design load. Therefore the reinforced roadbed was introduced as the solution. But the thickness and stiffness of reinforced roadbed in design code is being conservatively assessed by the foreign code without considering the domestic construction condition. In this paper, adequate Young's modulus, drain capacity, freezing depth, economical efficiency, bearing capacity, construction condition and 3-D finite element method were employed to determine the proper thickness of reinforced roadbed at the embankment section.

Vibration Optimum Design of Rotor Systems Using Genetic Algorithm (유전 알고리즘을 이용한 회전축계의 진동 최적설계)

  • 최병근;양보석
    • Journal of KSNVE
    • /
    • v.7 no.4
    • /
    • pp.645-653
    • /
    • 1997
  • For high performance rotating machinery, unstable vibrations may occur caused by hydrodynamic forces such as oil film forces, clearance excitation forces generated by the working fluid, and etc. In order to improve the availability one has to take into account the vibrations very accurately. When designing a rotating machinery, the stability behavior and the resonance response can be obtained by calculation of the complex eigenvalues. A suitable modifications of seal and/or bearing design may effectively improve the stability and the response of a rotor system. This paper deals with the optimum length and clearance of seals and bearings to minimize the resonance response(Q factor) and to maximize the logarithmic decrement in the operating speed under the constraints of design variables. Also, for an avoidance of resonance region from the operating speed, an optimization technique has been used to yield the critical speeds as far from the operating speed as possible. The optimization method is used by the genetic algorithm, which is a search algorithm based on the mechanics of natural selection and natural genetics. The results show that the optimum design of seals and bearings can significantly improve the resonance and the stability of the pump rotor system.

  • PDF

Rotordynamic Analysis of a Dual-Spool Turbofan Engine with Focus on Blade Defect Events (블레이드 손상에 따른 이축식 터보팬 엔진의 동적 안정성 해석)

  • Kim, Sitae;Jung, Kihyun;Lee, Junho;Park, Kihyun;Yang, Kwangjin
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.105-115
    • /
    • 2020
  • This paper presents a numerical study on the rotordynamic analysis of a dual-spool turbofan engine in the context of blade defect events. The blades of an axial-type aeroengine are typically well aligned during the compressor and turbine stages. However, they are sometimes exposed to damage, partially or entirely, for several operational reasons, such as cracks due to foreign objects, burns from the combustion gas, and corrosion due to oxygen in the air. Herein, we designed a dual-spool rotor using the commercial 3D modeling software CATIA to simulate blade defects in the turbofan engine. We utilized the rotordynamic parameters to create two finite element Euler-Bernoulli beam models connected by means of an inter-rotor bearing. We then applied the unbalanced forces induced by the mass eccentricities of the blades to the following selected scenarios: 1) fully balanced, 2) crack in the low-pressure compressor (LPC) and high pressure compressor (HPC), 3) burn on the high-pressure turbine (HPT) and low pressure compressor, 4) corrosion of the LPC, and 5) corrosion of the HPC. Additionally, we obtained the transient and steady-state responses of the overall rotor nodes using the Runge-Kutta numerical integration method, and employed model reduction techniques such as component mode synthesis to enhance the computational efficiency of the process. The simulation results indicate that the high-vibration status of the rotor commences beyond 10,000 rpm, which is identified as the first critical speed of the lower speed rotor. Moreover, we monitored the unbalanced stages near the inter-rotor bearing, which prominently influences the overall rotordynamic status, and the corrosion of the HPC to prevent further instability. The high-speed range operation (>13,000 rpm) coupled with HPC/HPT blade defects possibly presents a rotor-case contact problem that can lead to catastrophic failure.

The Friction Characteristics of the Journal Bearing in the Refrigerant Compressor

  • Cho, Ihn Sung;Baek, Il Hyun;Oh, Seok Hyung;Jung, Jae Youn
    • KSTLE International Journal
    • /
    • v.1 no.2
    • /
    • pp.113-117
    • /
    • 2000
  • The rotary-vane compressor has become one of the most successful types of compressors because of its mechanical reliability, compactness, and adaptability to moderately high-speed operation in virtually an unlimited range of sizes. However recently, the depletion of the ozone layer due to the current refrigerant(R22) has been getting worse, and it is one of the world's pressing issues. In this paper, we will discuss the use of R410a in the compressor of a room air-conditioner as an alternative refrigerant and air-conditioning system to R22, since R410a has greater refrigerant characteristics than R22. Miniaturization of the rotary compressor for the new refrigerant and air-conditioning system is also possible, which reduces the prime cost of production, hence R410a is naturally a better refrigerant. But to apply the new HFC refrigerant system in refrigeration and air-conditioning systems, a significant redesign of the current refrigerant system is also required, because as the refrigeration changes, lubrication characteristics vary. Close attention must be paid to friction force and energy loss due to friction and wear at many sliding areas.

  • PDF

A Case Study on the Reduction of Noise and Vibration at the Backpass Heat Surface in the Power Plant Boiler (300MW급 증기터빈의 베어링 윤활유 온도조정에 의한 오일휩 제거방법에 관한 연구)

  • Hwang, Dal-Yeon;Moon, Seung-Jae;Lee, Jae-Heon
    • Plant Journal
    • /
    • v.4 no.4
    • /
    • pp.56-61
    • /
    • 2008
  • The phenomena of oil whip in steam turbines take place for the unbalance force between a rotor shaft and bearing oil film. The several parameters that affect onset of oil whip have been well known. However, the major parameter of oil whip is shaft mis-alinement. A oil whip causes the high vibration and the shutdown of rotor system. We mostly stop the steam turbine to adjust a shaft re-alinement concerning oil whip. In this case, it needs many costs for maintenance and long shutdown times. In this study, we study and observe the oil whip of the 300MW steam turbine in many years and we conduct the field test for another steam turbine for reducing vibration from oil whip. The results of this study are that a oil whip takes place with a particular rotating speed or a particular turbine output and the oil temperature change is a very effective method for on-line oil whip treatment.

  • PDF

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

A Fundamental Study on the Development of Variable Preload Device Using Rubber Force (고무압을 이용한 가변예압장치 개발을 위한 기초 연구)

  • Choi, Chi-Hyuk;Kim, Dong-Hyeon;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.416-421
    • /
    • 2011
  • Recently there has been increase in need for high precision and high speed machining due to economic and environmental reasons. It is a very important issue that determines the optimal preload that is to be applied to bearings in order to satisfy the performance required in bearings according to its operation conditions. This study introduces a variable preload device that can automatically adjust the preload applied in a machine tool spindle using centrifugal force as opposed in existing rubber instrument. In this study, the deformation of the rubber device by the centrifugal force is analyzed and it is discussed that the proposed device can be worked properly through changes of the collar density.

Preliminary Study of Hybrid Micro Gas Turbine Engine (하이브리드 타입 초소형 가스터빈엔진 개발 및 초도 시운전)

  • Seo, Junhyuk;Choi, Juchan;Kwon, Kilsung;Baek, Jehyun
    • The KSFM Journal of Fluid Machinery
    • /
    • v.19 no.1
    • /
    • pp.24-30
    • /
    • 2016
  • In this study, a 2W micro-gas turbine engine was designed using micro-electro-mechanical systems (MEMS) technology, and experimental investigations of its potential under actual combustion conditions were performed. A micro-gas turbine (MGT) contains a turbo-charger, combustor, and generator. Compressor and turbine blades, and generator coil were manufactured using MEMS technology. The shaft was supported by a precision computer numerical control (CNC) machined static air bearing, and a permanent magnet was attached to the end of the shaft for generation. A heat transfer analysis found that the cooling effect of the air bearing and compressor was sufficient to cover the combustor's high temperature, which was verified in an actual experiment. The generator performance test showed that it can generate 2W at design rotational speed. Prototype micro-gas turbine generated maximum 1 mW electric power and lasted up to 15 minutes.