• Title/Summary/Keyword: high speed freight car

Search Result 30, Processing Time 0.028 seconds

Experimental Study on the Improvement of Running Stability for Freight Car (화물수송용 철도차량의 주행안정성 향상에 관한 실험적 연구)

  • Haam, Y.S.;Oh, T.Y.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.888-893
    • /
    • 2000
  • This experimental study is the improvement of running stability for freight car. KNR (Korean National Railroad)'s conventional wagons, light bodies running on Barber style bogies with 5-1/$2{\times}10$ journals, would be considered fundamentally to be a most difficult car to control above 100km/h. From the results of experiment, to permit high speed operation safely, was realized with the resilient side bearing. Also, equipped with resilient side bearing, and elastowedge friction elements to eliminate bolster wedge pocket wear, KNR's wagons can be secure the running stability with lower maintenance requirements than current experience.

  • PDF

Fatigue Cumulative Damage and Life Prediction of Uncovered Freight Car Under Service Load using Rainflow Counting Method (운전하중하의 레인플로집계법을 이용한 철도차량 무개화차의 피로누적손상과 수명예측)

  • Baek, Seok-Heum;Lee, Kyoung-Young;Mun, Sung-Jun;Cho, Seok-Swoo;Joo, Won-Sik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.1-9
    • /
    • 2005
  • An end beam is one of the most important structural members supporting uncovered freight under in-service loading. In general, it needs to endure over 25 years. However fatigue fracture has occurred at dynamic stress concentration location of the end beam because user's specifications demanded high speed and vehicle manufacturer made the uncovered freight car with comparatively low strength and stiffness. For durability analysis, finite element analysis is performed to evaluate the problem of uncovered freight structure and local strain. The uncovered freight car was operated on actual problematic railroad line to measure dynamic stress versus time history on the critical part from which a crack is initiated often. Rainflow cycle counting method was used to estimate fatigue damage at dangerous area under operating condition. Therefore, this study shows that analytical fatigue life at the end beam can be predicted on the basis of S-N curve and structure analysis and has a fairly good correlation with experimental fatigue life.

Vibration characteristics test of two types bogie frame of a freight car on Kyeungbu line (경부선을 주행하는 두 종류의 화차 대차프레임의 진동특성시험 및 진동증가 원인파악에 관한 연구)

  • 홍재성;함영삼;백영남;오택열
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1323-1326
    • /
    • 2004
  • A bogie frame of welded type have some problems. Some end beam has cracked. The cracks have profound influence on the safe freight service. The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, and running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance and the running safety. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the existing bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one. In this reports, the vibration characteristics were dealed with the most pressing matters for the solution of the end beam crack.

  • PDF

A study of the railroad vehicles cycle and method (철도차량 검수주기 및 방법에 관한 연구)

  • Yu, Yang-Ha
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.158-166
    • /
    • 2007
  • After constructing the high-speed railroad, KORAIL acquired advanced maintenance techniques about Rolling-stocks. Also RCM theory is applied to maintenance field like as inspection period and method. In the meantime, the development of the maintenance methode for Rolling-stock is slow when it compares to the components and system technology. For this reason KORAIL tries to build the optimal maintenance system which can lead the Rolling-stock maintenance technique. The existing vehicle except High Speed train KTX are separated to electric motor car, electric locomotive, diesel locomotive, diesel car, passenger car and freight car. The inspection period and methode for existing vehicles which mentioned above will be examined and the optimal Rolling-stock maintenance technique will be applied.

  • PDF

Rolling Stock Maintenance Scheduling for High-Sneed Railway (고속철도차량의 유지보수계획)

  • 김동희;홍순흠
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2003.05a
    • /
    • pp.53-61
    • /
    • 2003
  • The process of railway traffic planning is composed of several steps such as long - term, mid - term, short - term, and real - time plan. The planning of vehicle and manpower resources is a main research topic in tactical short - term planning step Railway vehicle is usually consisted of a power car, passenger/freight cars and human resource is composed of engine driver, cabin crew, ground personnel. So far , power car was main research target in railway vehicle scheduling problem. Recently according as the light electric railway or high - speed railway is introduced, the operational planning of train set vehicles become important . In this paper , we introduce the conceptional model for trainset restoring problem and developed heuristic algorithm.

  • PDF

A Study on the Rolling Stock Scheduling considering maintenance activities in Railway (유지보수를 고려한 철도차량 운용계획에 관한 연구)

  • Kim Dong-Hee;Hong Sun-Heum
    • Proceedings of the KSR Conference
    • /
    • 2003.05a
    • /
    • pp.280-285
    • /
    • 2003
  • The process of railway traffic planning is composed of several steps such as long-term, mid-term. short-term, and real-time plan. The planning of vehicle and manpower resources is a main research topic in tactical short-term planning step. Railway vehicle is usually consisted of a power car, passenger/freight cars and human resource is composed of engine driver, cabin crew, ground personnel. So far, power car was main research target in railway vehicle scheduling problem. Recently according as the light electric railway or high-speed railway is introduced, the operational planning of trainset vehicles become important, In this paper, we introduce the conceptional model for trainset restoring problem and developed heuristic algorithm.

  • PDF

Vibrational Characteristics of an End Beam of a Freight Cal- on the Taebaek Line (태백선을 주행하는 화차 엔드빔의 진동특성에 관한 연구)

  • 문경호;홍재성;이동형;서정원;함영삼
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.10
    • /
    • pp.962-967
    • /
    • 2004
  • A bogie is the device that connects a car body and wheel sets of a rail vehicle. It is the critical component that determine:; the running safety, The bogie consists of a frame, suspensions, brakes and wheel sets. Various analyses including a numerical simulation using a finite element method, a static load test, a fatigue test, ai)d r running test should be carried out to design the bogie. However cracks have been found at some end beams of the bogies mounted on the freight cars running with the high speed. The cracks of the end beam results in deterioration of the brake performance an the running safety, A new design has been suggested to solve this problem by ROTEM company and it's performance has been tested in this paper. Numerical simulations and dynamic tests are carried out to figure out the causes of cracks in the conventional bogie, and the vibrational characteristics of the improved bogie are compared with those of the conventional one.

The cause examination of the crack of the end beam for welding structure type bogie (용접구조형 대차 엔드빔의 균열원인 규명)

  • Hong Jai-Sung;Ham Young-Sam;Lee Dong-Hyong;Sea Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.726-731
    • /
    • 2004
  • Bogie is the connection device between carbody and wheel in railway vehicles. It is the core part that exert a important effect on the passenger safety and running safety. Bogie largely consists of bogie frame, suspension, brake, wheel set. Static and Dynamic load have acted on it complexly. When the bogie is designed, finite element method, static load test, fatigue test, running test should be considered. Some bogie frame of high speed railway freight car have the problem. It's end beam was cracked. The crack of the end beam have a bad effect on brake system. In that case, the cars would be in danger of derailment.

  • PDF

A Study on Safety Estimation of Railroad Wheel (컨테이너 철도차륜의 안전성 평가에 관한 연구)

  • Lee, Dong-Woo;Kim, Jin-Nam;Cho, Seok-Swoo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.4
    • /
    • pp.1178-1185
    • /
    • 2010
  • Recently, high speed of container freight cars is causing fatigue damage of wheel. Sudden failure accidents cause a lot of physical and human damages. Therefore, damage analysis for wheel prevents failure accident of container freight car. Wheel receives mechanical and thermal loads at the same time while rolling stocks are run. The mechanical loads applied to wheel are classified by the horizontal load from contact of wheel and rail in curve line section and by the vertical force from rolling stocks weight. Also, braking and deceleration of rolling stocks cause repeated thermal load by wheel tread braking. Specially, braking of rolling stocks is frictional braking method that brake shoe is contacted in wheel tread by high breaking pressure. Frictional heat energy occurs on the contact surface between wheel tread and brake shoe. This braking converts kinetic energy of rolling stocks into heat energy by friction. This raises temperature rapidly and generates thermal loads in wheel and brake shoe. There mechanical and thermal loads generate crack and residual stress in wheel. Wetenkamp estimated temperature distribution of brake shoe experimentally. Donzella proposed fatigue life using thermal stress and residual stress. However, the load applied to wheel in aforementioned most researches considered thermal load and mechanical vertical load. Exact horizontal load is not considered as the load applied to wheel. Therefore, above-mentioned loading methods could not be applied to estimate actual stress applied to wheel. Therefore, this study proposed safety estimation on wheel of freight car using heat-structural coupled analysis on the basis of loading condition and stress intensity factor.

Comparisons of Empirical Braking Models for Freight Trains Using P4a Distribution Valve (P4a 분배밸브를 사용하는 화물열차의 경험적 제동모델들의 비교)

  • Choi, Don Bum;Kim, Min-Soo;Lee, Kangmi;Kim, Young-Guk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • This study examined the braking characteristics of a heavy haul freight train with P4a distribution valves applied to domestic high-speed freight trains. A freight train was composed of 50 cars, which is twice the normal operation. A braking test was performed to confirm the characteristics of the braking of a heavy haul. The brake cylinder pressures were measured for emergency and service braking on the 1st, 10th, 20th, 30th, and 50th cars. Because the brake signal is transmitted to the pressure through the braking tube connected to the end of the train, the rear vehicle is braking later than the vehicle ahead. Therefore, it is necessary to predict the brake pressures in all cars in a train to supplement the results of the limited tests and calculate the braking distance. The pressure in each car was determined using empirical models of linear interpolation, stepwise, and exponential models, which provided reliable information. The predictive results of the empirical models were compared with the measured results, and the exponential model was predicted relatively accurately. These results are expected to contribute to the safe operation of heavy haul freight trains and can be used to predict the braking distance and calculate the level of impact between vehicles during braking.