• 제목/요약/키워드: high speed freight car

검색결과 30건 처리시간 0.025초

고속화차용 용접대차의 구조강도해석 (The structural analysis of bogie for high speed freight car)

  • 황원주;함영삼;권성태;허현무;전응식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.217-221
    • /
    • 2001
  • Barber bogie and Y25 bogie is the main bogie of freight car which is used in the Korean railway. In case of Barber bogie and a mixed formation tile maximum speed limit of empty car is 70 km/h and that of loaded car is 90 km/t and also it runs a speed of 110 km/h in time of an exclusive formation of Y25 bogie. The car named as high speed freight car at present is Y25 bogie which modeled on the Y25 bogie or Europe developed in 1993, Y25 bogie has no problem about the running capacity up to the speed of 110 km/h, but it works as limiting factors to tile increasing cost of maintenance and repair expenses which caused by repair of bogie and the cost of materials. This study is going to describe the contents examined by analysis and tests, aimed at being used as an index of plan in the future through the strength test of high speed freight car which is used now.

  • PDF

고속 컨테이너 화차 차체의 구조강도 평가 (An Estimation of Structural Strength of the Carbody for High Speed Container Freight Car)

  • 전응식;함영삼;김형진;허현무;황원주
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 춘계학술대회 논문집
    • /
    • pp.212-216
    • /
    • 2001
  • Recently, it has been trending toward speed-up not only in the passenger car but in the freight cu. In this study, we thus performed stress analysis for the carbody for high speed container freight car in use and field test of the freight car in Gyungbu-line so that we may utilize the results as a design guide for speed-up hereafter- Five vertical loading conditions due to dynamic effect and the weight of the carbody and the container applied to locking devices of the carbody and its results are compared with that of a test, As a result, we found that there is need to complement the strength of the carbody in some measure when speed up the present freight car.

  • PDF

고속주행을 위한 화차 한량의 사행동 해석 (Analysis on the Snake Motion of One Freight Car for High Speed Running)

  • 이승일;최연선
    • 한국철도학회논문집
    • /
    • 제6권3호
    • /
    • pp.149-155
    • /
    • 2003
  • The development of railway vehicles involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a freight car is developed to find the critical speed. The freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of the freight car was calculated using ADAMS/RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

진동모드를 고려한 고속화차의 임계속도 (Critical Speed of High Speed Freight Car with the Consideration of Vibration Modes)

  • 이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 춘계학술대회 논문집
    • /
    • pp.437-445
    • /
    • 2002
  • The development of railway vehicle and bogie involves the proper selection of design parameters not only to achieve high speed of the train but also to reduce the vibration. In this study, an analytical model of a high speed freight car is developed to find the critical speed. The high speed freight car can generate the snake motion of the lateral, rolling and yawing motion of the car body and the bogie. The numerical analysis for the equation motions with 17 degrees of freedom showed the running stability and the critical speed due to the snake motion. Also the vibration modes of the high speed freight car was calculated using ADAMS RAIL software, which showed that the critical speed have the yawing modes of the car body and the bogie.

  • PDF

고속화차 한량의 사행동 해석 (Analysis of the Snake motion of One High Speed Freight Car)

  • 이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2002년도 추계학술대회 논문집(I)
    • /
    • pp.193-201
    • /
    • 2002
  • The development of railway vehicle and bogie involves the proper selection of design parameters not only to achieve high speed but also to reduce the vibration of the train. In this study an analytical model of a high speed freight car is developed to find the critical speed. The high speed freight car can generate the snake motion of the lateral and yawing motion of the car body, the bogie, and the wheelset. Numerical analysis for the nonlinear equation motions with 17 degrees of freedom showed the running stability and critical speed due to the snake motion. Also, the vibration modes of tile high speed freight car was calculated using ADAMS RAIL, which showed that the critical speed have the yawing modes of the car body and the bogie. Finally, this paper shows that the snake motion of the vehicle can be controlled with the modifications of the design parameters.

  • PDF

고속주행용 화차대차의 주행안전성 (Running Safety of High Speed Freight Bogie)

  • 이승일;최연선
    • 한국철도학회논문집
    • /
    • 제4권3호
    • /
    • pp.116-122
    • /
    • 2001
  • As freight traffic becomes heavier, the high speed of existing freight cars is essential, instead of the construction of a new railway. The high speed can be achieved by the modifications of freight bogie design. In this paper, an analytical model of freight bogie is developed to decide the critical speed. The dynamic responses of the analytical model are compared with the experimental data from a running test of freight bogie and showed good agreements between them. The analytical model is used to find the design of freight bogie. The parameter studies show that the reduction of wheelset mass ratio and the increase of the axle distance of freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this study also shows that smaller wheel conicity deteriorates the running safety of freight car, which means that the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

화물수송용 철도차량 현가장치의 설계변수와 진동성능에 관한 연구 (A study on the design parameters and vibration performance of suspension device for freight car)

  • 함영삼;오택열
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2001년도 춘계학술대회논문집B
    • /
    • pp.507-512
    • /
    • 2001
  • As needs for substitution of excessive road-oriented transport by the railroad increase, we proposed the guideline for development of the high speed freight car up to 150km/h through analyzing the critical speed of welded-type freight car employed and investigating the improvement in its maintenance. This study, the proper design parameters of conical rubber spring was determined to meet the vibration performance.

  • PDF

고속화차용 용접대차 프레임 개선모델의 강도평가 (The Estimation of Structural Strength of Improved Frame of Welded Bogie for High Speed Freight Car)

  • 황원주;함영삼;강부병;전응식
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.235-239
    • /
    • 2001
  • The bogie of high speed freight car running on conventional line is welded bogie modeled on Y25 bogie developed in Europe. Y25 bogie has speed limit of 110km/h. But it has limiting factors to speed-up as increasing maintenance cost and friction parts pedestal. And also it was reported that cracks are found in the parts where center beam meet bolster and endbeam near bracket for braking part. This study includes stress analysis improved structure of welded bogie for strength evaluation by numerical method and experimental method. According to the study, new configuration bogie shows improvement in strength.

  • PDF

고속주행용 화차 대차의 주행안전성 (Running Safety of High Speed Freight Bogie)

  • 이승일;최연선
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2001년도 추계학술대회 논문집
    • /
    • pp.179-186
    • /
    • 2001
  • As the freight traffic becomes heavier, the high speed of existing freight cars is essential instead of the construction of a new railway. The high speed can be achieved by the design modifications of the freight bogie. In this paper, an analytical model of freight bogie including the lateral force between rail and the flange of wheel is developed to decide the critical speed, which activates a hunting motion and tells the running safety of freight bogie. The dynamic responses of the analytical model were compared with an experimental data from a running test of a freight bogie and showed good agreements between them. The analytical model is used to find the design modifications of the freight bogie by parameter studies. The results show that the reduction of wheelset mass ratio and the increase of the axle distance of the freight bogie can increase the critical speed, but the primary lateral stiffness has little effects on the critical speed. And this also study shows that smaller wheel conicity deteriorates the running safety of the freight car, which means the overhauling of the wheel of freight bogie should be done regularly.

  • PDF

다물체 동역학해석을 이용한 DMT 화차의 주행특성 연구 (Multibody Dynamic Simulation and Running Characteristics of DMT Freight)

  • 이승일;엄범규;이희성
    • 한국소음진동공학회논문집
    • /
    • 제19권1호
    • /
    • pp.35-41
    • /
    • 2009
  • Through the multibody dynamic simulation, the analysis model of the modalohr freight car of the DMT freight car was developed. By using the developed analysis model, the running dynamic characteristics was inquired through the dynamic analysis about the modalohr freight car. As the running speed and the primary suspension were increased, the lateral and vertical vibration accelerations of the car-body and the bogie were also increased. In case of the lateral vibration acceleration of the car-body, however, review should be considered since it can be influenced by the nonlinear characteristic of the primary suspension. The lateral and vertical vibration of the car-body were generated at the frequency of $2{\sim}3\;Hz$ and $7{\sim}8\;Hz$. And the lateral and vertical vibration of the bogie were generated at the frequency of $25{\sim}35\;Hz$ at the low speed section, $40{\sim}50\;Hz$ at the high speed section.