• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.03 seconds

Study on Fire Resistance Performance According to Boundary Conditions for Beams Made of High-Strength Structural Steels Using Analytical Methods (경계조건에 따른 고강도 H형강 부정정 보부재의 해석적 내화성능 연구)

  • Kwon, In-Kyu
    • Fire Science and Engineering
    • /
    • v.29 no.5
    • /
    • pp.23-28
    • /
    • 2015
  • Recently, structural materials have been developed to have high performance, and SM 520 has been developed and used for high-rise buildings. However, fires frequently occur in buildings, and the number of victims and amount of damage increase year by year. However, the evaluation of fire resistance performance for structural beams made of SM 520 is done with specimens made of ordinary structural steels with boundary conditions of a fixed beam, and the results are allowed for use in steel-framed buildings. This study analyzed the fire resistance performance of statistically indeterminate beams built with SM 520. The analysis used a fire engineering technique that includes mechanical and thermal data of SM 520 and heat transfer theory, and heat stress analysis was also conducted. The results from the analysis were compared with those from a statistically determinate beam made of ordinary structural steels.

Exploring New Paradigms in High-Density Vertical Hybrids

  • Ravindranath, Swinal Samant;Menon, Srilakshmi Jayasankar
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.2
    • /
    • pp.111-125
    • /
    • 2018
  • By the year 2050, the world population is set to increase to 9 billion people, of which 66% will be living in cities. It is argued that this will inevitably lead to further urban densification and soaring, inhumane and dense vertical environments. However, innovative and disruptive technologies impacting all realms of life means that we will also live, work, play, learn and make in novel ways, the beginnings of which are already becoming evident. These present opportunities for reimagining city environments, and in particular tall buildings, with a focus on reducing redundancies and re-appropriating existing buildings, creating novel hybrid environments, incorporating green and social democratic spaces, and integrating multiple modes of transport. This paper examines how vertical cities may perhaps be dense, resource efficient, and yet humane, presenting three possible scenarios for Singapore's context, which are, however, common to many Asian high-density urban environments. The scenarios presented are the outcome of Final-Year Thesis Projects undertaken by final-year architecture students at the National University of Singapore (NUS) in 2017.

Partial turbulence simulation and aerodynamic pressures validation for an open-jet testing facility

  • Fu, Tuan-Chun;Chowdhury, Arindam Gan;Bitsuamlak, Girma;Baheru, Thomas
    • Wind and Structures
    • /
    • v.19 no.1
    • /
    • pp.15-33
    • /
    • 2014
  • This paper describes partial turbulence simulation and validation of the aerodynamic pressures on building models for an open-jet small-scale 12-Fan Wall of Wind (WOW) facility against their counterparts in a boundary-layer wind tunnel. The wind characteristics pertained to the Atmospheric Boundary Layer (ABL) mean wind speed profile and turbulent fluctuations simulated in the facility. Both in the wind tunnel and the small-scale 12-Fan WOW these wind characteristics were produced by using spires and roughness elements. It is emphasized in the paper that proper spectral density parameterization is required to simulate turbulent fluctuations correctly. Partial turbulence considering only high frequency part of the turbulent fluctuations spectrum was simulated in the small-scale 12-Fan WOW. For the validation of aerodynamic pressures a series of tests were conducted in both wind tunnel and the small-scale 12-fan WOW facilities on low-rise buildings including two gable roof and two hip roof buildings with two different slopes. Testing was performed to investigate the mean and peak pressure coefficients at various locations on the roofs including near the corners, edges, ridge and hip lines. The pressure coefficients comparisons showed that open-jet testing facility flows with partial simulations of ABL spectrum are capable of inducing pressures on low-rise buildings that reasonably agree with their boundary-layer wind tunnel counterparts.

Natural Frequency of Tall Building Through Ambient Vibration Measurement (고층건물의 상시진동계측을 통한 고유진동수)

  • Yoon, Sung Won;Ju, Young Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.2
    • /
    • pp.117-124
    • /
    • 2003
  • Wind-induced motions, like acceleration for instance, often influence designs for high-rise buildings. As a consequence, correct assessment of natural frequency becomes important. The empirical expressions used to quantify this parameter at the design phase tend to yield values that are significantly different from each other. This paper is concerned with the natural periods of steel buildings. It describes the vibration measurement methods that were employed for testing buildings. This paper will also present reliable methods of assessing the natural period from ambient vibration tests. Data from measurements on 21 buildings in Seoul were provided while 21 buildings were tested by ambient vibration measurements to obtain the natural periods. While regression formulas of natural periods for steel-frarried tall buildings were suggested,the obtained formula was compared with the empirical expressions of structural standards and the Eigen-value analysis.

A Study on u-Residential Space Service of Ubiquitous Vertical Farm (Ubiquitous Vertical Farm의 u-주거공간 서비스 도출에 관한 연구)

  • Lee, Heang-Woo;Kim, Yong-Seong;Lee, Jae-Il
    • Journal of the Korean housing association
    • /
    • v.23 no.5
    • /
    • pp.51-60
    • /
    • 2012
  • Large-scale urban developments with increasing population and expansion of industrial facilities have destroyed the ecosystem. Consequently, the importance of vertical farm as a form of urban agriculture is increasing. However, such problems of vertical farms as economy and lack of awareness of residents are being raised. Firstly, this study derived types of vertical farm that are applicable to residential spaces through an examination of vertical farm buildings, and then inferred assessment items for a questionnaire survey for the development of u-services. Secondly, based on the issues deduced from the survey, u-services needed in vertical farm buildings were derived to use them as the basic data when we plan for a ubiquitous vertical farm building in residential space in the future. As result, the following uservices of ubiquitous vertical farm were proposed: u-notification service about the condition of crops from the aspect of growth management based on ubiquitous technology, remote/automatic control u-services, harvest information u-service for harvest management, recipe information u-service, and indoor air quality monitoring u-service, indoor environment adjusting u-service, and farm environment control u-service. Considering that many new buildings in Korea are residential buildings and many high-rise buildings are being planned, studies on vertical farm buildings must be continued.

Performance Based Seismic Design State of Practice, 2012 Manila, Philippines

  • Sy, Jose A.;Anwar, Naveed;HtutAung, Thaung;Rayamajhi, Deepak
    • International Journal of High-Rise Buildings
    • /
    • v.1 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • The purpose of this paper is to present the state of practice being used in the Philippines for the performance-based seismic design of reinforced concrete tall buildings. Initially, the overall methodology follows "An Alternative Procedure for Seismic Analysis and Design of Tall Buildings Located in the Los Angeles Region, 2008", which was developed by Los Angeles Tall Buildings Structural Design Council. After 2010, the design procedure follows "Tall Buildings Initiative, Guidelines for Performance-Based Seismic Design of Tall Buildings, 2010" developed by Pacific Earthquake Engineering Research Center (PEER). After the completion of preliminary design in accordance with code-based design procedures, the performance of the building is checked for serviceable behaviour for frequent earthquakes (50% probability of exceedance in 30 years, i.e,, with 43-year return period) and very low probability of collapse under extremely rare earthquakes (2% of probability of exceedance in 50 years, i.e., 2475-year return period). In the analysis, finite element models with various complexity and refinements are used in different types of analyses using, linear-static, multi-mode pushover, and nonlinear-dynamic analyses, as appropriate. Site-specific seismic input ground motions are used to check the level of performance under the potential hazard, which is likely to be experienced. Sample project conducted using performance-based seismic design procedures is also briefly presented.

Seismic fragility analysis of RC frame-core wall buildings under the combined vertical and horizontal ground motions

  • Taslimi, Arsam;Tehranizadeh, Mohsen;Shamlu, Mohammadreza
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.175-185
    • /
    • 2021
  • This study strives to highlight the importance of considering the vertical ground motions (VGM) in the seismic evaluation of RC buildings. To this aim, IDA (Incremental Dynamic Analysis) is conducted on three code-based designed high-rise RC frame-core wall buildings using a suite of earthquake records comprising of significant VGMs. To unravel the significance of the VGM inclusion on the performance of the buildings, IDAs are conducted in two states (with and without the vertical component), and subsequently based on each analysis, fragility curves are developed. Non-simulated collapse criteria are used to determine the collapse state drift ratio and the area under the velocity spectrum (SIm) is taken into account as the intensity measure. The outcome of this study delineates that the inclusion of VGM leads to the increase in the collapse vulnerability of the structures as well as to the change in the pattern of inter-story drifts and failure mode of the buildings. The results suggested that it would be more conservative if the VGM is included in the seismic assessment and the fragility analysis of RC buildings.

Sustainable Tall Buildings: Summary of Energy-Efficient Design

  • Kheir Al-Kodmany;Mir M. Ali;Paul J. Armstrong
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.107-120
    • /
    • 2023
  • Tall buildings are frequently decried as unsustainable due to their excessive energy usage. Early skyscrapers used natural light and ventilation to facilitate human comfort and applied organic materials such as stone, glass, wood, concrete, and terra cotta for cladding and finishes. With the advent of fluorescent lighting, modern heating, ventilation, air-conditioning (HVAC) systems, and thermally sealed curtain walls, tall office buildings no longer had to rely on natural light and ventilation to provide comfort. Energy efficiency was not a significant factor when the operational costs of buildings were relatively inexpensive. However, today's skyscrapers must become more energy-efficient and sustainable due to energy crises and climate change. This paper highlights vital energy-efficient design principles and demonstrates with illustrative case studies how they are applied to tall buildings in various parts of the world. It shows how sustainable environmental systems do not act alone but are integrated with advanced curtain wall systems, sky gardens, and atria, among others, to regulate and sustain thermal comfort and conserve energy.

Development of Large Tuned Mass Damper with Stroke Control System for Seismic Upgrading of Existing High-Rise Building

  • Hori, Yusuke;Kurino, Haruhiko;Kurokawa, Yasushi
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.167-176
    • /
    • 2016
  • This paper describes a large tuned mass damper (TMD) developed as an effective seismic control device for an existing highrise building. To realize this system, two challenges needed to be overcome. One was how to support a huge mass that has to move in any direction, and the second was how to control mass displacement that reaches up to two meters. A simple pendulum mechanism with strong wires was adopted to solve the first problem. As a solution to the important latter problem, we developed a high-function oil damper with a unique hydraulic circuit. When the mass velocity reaches a certain value, which was predetermined by considering the permissible displacement, the damper automatically and drastically increases its damping coefficient and limits the mass velocity. This velocity limit function can effectively and stably control the mass displacement without any external power. This paper first examines the requirements of the TMD using a simple model and clarifies the constitution of the actual TMD system. Then the seismic upgrading project of an existing high-rise building is outlined, and the developed TMD system and the results of performance tests are described. Finally, control effects for design earthquakes are demonstrated through response analyses and construction progress is introduced.

A Study on the Evaluation Method for the Degree of Integration towards Office Towers in Different Climate Zones

  • Han, Seung-Hoon;Moon, Jin Woo;Kim, Kyoung-Hee
    • Architectural research
    • /
    • v.14 no.4
    • /
    • pp.117-124
    • /
    • 2012
  • High rise office buildings represent one of the most energy-intensive architectural typologies. The growth of urban population necessitates sustainable high rise towers that lessen environmental impacts and energy consumption. Among various sustainable strategies, the integrated design is long known to be an important process that has great impact on building's sustainability. The framework for this paper is based on the case study of integrated towers that are located in different climate zones. The paper specifically addresses to what extent climate conditions influence the design of a high rise building and what kinds of the climate integrated design has been implemented. Qualitative case studies were carried out using published data and architectural drawing set. The technical work presented in the paper is based on computer simulation that examines the insolation analysis using hourly recorded weather data. The analysis results revealed that the site and building envelope integration and the site and building service systems have shown the most frequently employed in the integrated towers through the implementation of renewable resource integration, high performance envelopes and sustainable building service systems. Internal comfort and further energy saving in the integrated towers are offered through an automatic building management system. Due to the dynamic climate conditions, integration of building systems requires a sophisticated approach to building sustainability.