• 제목/요약/키워드: high rise buildings

Search Result 1,539, Processing Time 0.025 seconds

Necessity of Korean Integrated Life Safety Code and Fire Safety Performance Evaluation Technology (한국형 통합 인명안전코드 및 화재안전 성능평가기술의 필요성)

  • Kwon, Young-Jin;Koo, In-Hyuk;Jin, Seung-hyeon;Lee, Byeong-Heun;Kim, Yun-Seong
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.50-51
    • /
    • 2020
  • Recently, construction projects are gradually becoming high-rise and large-scale, and furthermore, the use of new buildings is emerging through the deepening of the underground. In this situation, a lot of fire damage has occurred in recent years, mainly in buildings and tunnel structures. In particular, damages caused by fires during large-scale construction projects such as freezing warehouse accidents are increasing. In this situation, in Korea, it is still trying to secure safety from human fire through the administrative system divided into the building law and the fire law, but it is being developed in a negative direction rather than a positive direction. The fire risk is getting bigger even when the road is not maintained. In this current situation, it is considered that the development of a Korean integrated life safety code centering on the consciousness base of Koreans will be necessary, and in particular, the ease of revision will also be needed by promoting the integrated safety code rather than current laws and regulations. This is a summary of the future tasks.

  • PDF

Multi-Dimensional Hybrid Design and Construction of Skyscraper Cluster -Innovative Engineering of Raffles City Chongqing-

  • Wang, Aaron J.
    • International Journal of High-Rise Buildings
    • /
    • v.6 no.3
    • /
    • pp.261-269
    • /
    • 2017
  • Designed by star architect of Moshes Safdie, Raffles City Chongqing includes a total of 6 mega high-rise towers 250 to 380 m tall, a sky conservatory, a 5-storey high shopping mall and a 3-storey basement car parking. Located at the confluence of the Yangtze and Jailing Rivers, the site for the project is imbued with a significance that is immediately symbolic, both as a sign of Chongqing's important past and as a vivid indicator of the city's thriving present and future. The design for the project to be situated at this gateway takes as its governing idea the image of powerful sails upon the water. The outer facades of the project's eight towers - the transparent surfaces that will face the water to the north - are meant to recall a fleet of ancient Chinese ships, with their huge rectangles of white canvas filled by the wind. This is a $1.13million\;m^2$ mega scale integrated project of office, retail, hotel, service residence and high-end residence with the transportation hub and traffic circulation at various levels of the project. This paper presents the multi-dimensional hybrid design, engineering and construction of this mega scale project. The innovations and the cutting-edge technology used in this project are introduced and discussed benchmarking the design and construction of the skyscraper cluster in a major city like Chongqing of China.

Structural Design of High-Rise Building in Toranomon-Azabudai Project (A Block)

  • Kazumasa, Okabe;Kai, Toyama;Takuya, Furuta;Jyunichi, Yamashita;Hiroki, Mukai;Takahiro, Goseki;Shingo, Masuda;Dai, Shimazaki;Yusuke, Miyagi;Yuji, Ozawa
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.157-170
    • /
    • 2022
  • This paper explains about structural planning and structural design of the high-rise building in Toranomon-Azabudai Project (A Block) which is now under construction. The building is about 330 meters high, has 4.2 aspect ratio, and the outline of the building has shallow curve. We adopted seismic response control structure. The building is a steel rigid frame structure with braces, and it has enough stiffness to obtain its primary natural period to be less than about seven seconds, in consideration of wind response, seismic response and inhabitability for the wind shaking. In terms of business continuity plan, the building has a high seismic performance; value of story drift angle shall be 1/150 or less and members of the building remain almost undamaged while or after a large earthquake. Active mass dumper shall be installed at the top of the building to improve inhabitability while strong wind is blowing.

Evaluation on the Fire Resistance Performance for High-Rise Modular Walls (중·고층형 모듈러 벽체의 내화성능 평가)

  • Yang, Seung-Cho;Lee, Jae-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.4
    • /
    • pp.15-22
    • /
    • 2019
  • The use of modular buildings is increasing because of various advantages of modular buildings. But there are limits to apply modular buildings to medium-rise buildings because the building law provides only the specification criteria of the modular building with respect to the 1 hour fire resistance performance. This study was conducted to investigate 2 hours fire resistance performance of load bearing walls with steel studs in modular buildings by KS F 2257-1 and KS F 2257-4. After full scale tests, load bearing walls ensuring two hours fire resistance performance consist of at least 2 layers of fire resistance plaster boards of 19mm thickness or 3 layer of fire resistance plaster boards of thickness.

Analysis on Residents Behavior and Determinants of Satisfaction to the Exterior Space in High-rise Apartment complex. (도시 고층아파트단지 주거민의 외부공간 이용행태 및 만족요인 분석)

  • 이현택;이철희
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.18 no.2
    • /
    • pp.79-93
    • /
    • 1990
  • The purpose of this study is to establish better residential environment in APT. complex. In this study, the actual conditions of exterior space, user behavior and degree of satisfaction are investigated and analyzed on the 5 high-rise story APT complex in Taegu city. The results of this study were as follow ; The size and arrangement of organizational elemnnt to exterior space in APT. complex have been regulated by law and regulations as the buildings coverage and floor space index, but housinghold and accessibility to the racility will be simultaneously considered to raise Quality of the residential environoment. The main user behavior to exterior space in APT. complex was practical activity and the user behavior pattern by week and among APT. complex were found similiarly. In the ratio of use to exterior space in APT. Complex, that of high-rise residents were lower than that of lowrise residents. In the degree of satisfaction by property of variables to exterior environment In APT. comples, physical of buildings, social - psychologic, managerial economical, physical property of exterior space were estimated positively, but properly of facility were estimated negatively. The degee of satisfaction to exterior environment in APT. complex was highly Influenced by green space, site size. As a result of ractor analysis, the four factors were drawn out from exterior environment in APT. complex. and the factors that have an effect on the degree of residents' satisfaction by factorscore were found in the order of importance as fallow ; managemental, physical, environmental, organizalional factor. Therefore, devilopment of APT. complex should be considered in a view of environmental psychology according to physical organization for used in the future. It is recommended that this problems should be necessitated to be more deeply studies in the future.

  • PDF

Study on the Cable Wall System Applied to Reinforced Concrete Exterior (철근콘크리트구조 외장재에 케이블월 시스템 적용에 관한 연구)

  • Park, Hyun-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.579-585
    • /
    • 2017
  • Development of a facade system that can reduce load factor and costs in high-rise building construction is required. The proposed cable wall system is used as a structural support by the glass-cable and can increase openness on lower elevations and the lobby area. Its use in high-rise buildings can reduce construction costs. Without transferring directly a strong initial tension of the cable to the building frame is connected to the steel member and the reinforced concrete structures, by absorbing the initial tension of the cable, it is possible to control the occurrence of a strong concentrated loads to the structure. Comparison of load-displacement test results from the numerical analysis with the test results showed reasonable agreement, Therefore, the proposed numerical results confirm good prediction of cable behavior for the facade system.

The Influence of Natural Smoke Ventilators and Wind Velocities on the Stack effect in High-rise Buildings (배연창 및 외기풍속이 초고층 건축물의 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Kim, Bum-Gyu;Yeo, Yong-Ju;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.22 no.4
    • /
    • pp.20-26
    • /
    • 2008
  • The performance of natural smoke ventilators in High-rise buildings was analyzed by investigating the stack effect depending on the wind velocities using CONTAMW tool. The results showed that the opening of smoke ventilators can influence on the stack effect in the building thus moving the position of the neutral plane toward the opened smoke ventilators. The outside wind velocities can move up the neutral plane toward the top of the building thus increasing pressure differentials at the bottom of the building. The smoke ventilators can maintain its normal performance without outside wind, however, strong outside wind can prevent natural smoke exhaust due to the infiltration of outside air at the ventilators.

The Method of Force of Fire in High-Rise Building by Guide to the Fire Safety Concepts Tree: Focusing on Manually Fire Suppression Strategy (화재안전트리 이론에 따른 초고층건축물의 소방력 공급방안: 수동화재진압 전략을 중심으로)

  • Oh, Seong-Ju;Kong, Ha-Sung
    • Fire Science and Engineering
    • /
    • v.34 no.1
    • /
    • pp.79-88
    • /
    • 2020
  • This study analyzes the issue of the supply of force of fire in the high-rise buildings, and proposes an efficient method to do so. The results are as follows. First, in terms of Detect fire, it is necessary to shorten force of fire supply time by diversifying fire alarms such as alarms, vibrations, and voices from outside, clarification of fire occurrence points, and marking of fire. Second, with regard to communication signals, strengthening the installation target of wireless communication auxiliary facilities, supplementing the installation of repeaters, and constructing a multicommunications network were proposed. Third, in terms of Decide action, it is necessary to supply firefighter and firefighting equipment with the method of crossing of a river in adjacent buildings. Fourth, in terms of Respond to site, helicopters and emergency elevators are used to assist in the supply of firefighting equipment using drones. Easy-to-break glass windows and identification marks are required in every floor. Finally, in terms of applying fire suppressants, water can be supplied by means of a helicopter adjacent to the structure.

Case Studies for Anlayzing Effects of Outriggers on Gravity Load Managements (아웃리거의 중력하중 조절 효과 분석을 위한 사례연구)

  • Kang, Su-Min;Eom, Tae-Sung;Kim, Jae-Yo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.3
    • /
    • pp.255-266
    • /
    • 2010
  • In high-rise buildings, an outrigger system is frequently used as a resisting system for lateral loads. Since the outriggers tie exterior columns and an interior core, exterior columns can participate in the lateral load resisting system and the structural resistance capacity can be increased. However, the outriggers contribute for controlling gravity loads as well as lateral loads. The flows of gravity loads can be changed by the members of outriggers, for the purposes of transferring loads to mega-columns, distributing gravity loads equally among vertical members of columns, walls, or piles, minimizing differential settlements in a foundation system, and so on. In this study, by computational structural analyses of high-rise buildings over 100 floors, the effects of outriggers on controlling gravity loads are analyzed. Analyses for 3-dimensional models with or without outrigger members are performed, and then the gravity load distributions in columns and piles and foundation settlements are analyzed. Also, the effects of outriggers on gravity load controls during construction stages as well as after construction are included.

Seismic Response Evaluation of Mid-Story Isolation System According to the Change of Characteristics of the Seismic Isolation Device (면진장치 특성 변화에 따른 중간층 면진시스템의 지진응답 평가)

  • Kim, Hyun-Su;Kim, Su-Geun;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.18 no.1
    • /
    • pp.109-116
    • /
    • 2018
  • As the number of high-rise buildings increases, a mid-story isolation system has been proposed for high-rise buildings. Due to structural problems, an appropriate isolation layer displacement is required for an isolation system. In this study, the mid-story isolation system was designed and the seismic response of the structure was investigated by varying the yield strength and the horizontal stiffness of the seismic isolation system. To do this, a model with an isolation layer at the bottom of $15^{th}$ floor of a 20-story building was used as an example structure. Kobe(1995) and Nihonkai-Chubu(1983) earthquake are used as earthquake excitations. The yield strength and the horizontal stiffness of the seismic isolation system were varied to determine the seismic displacement and the story drift ratio of the structure. Based on the analytical results, as the yield strength and horizontal stiffness increase, the displacement of the isolation layer decreases. The story drift ratio decreases and then increases. The displacement of the isolation layer and the story drift ratio are inversely proportional. Increasing the displacement of the isolation layer to reduce the story drift ratio can cause the structure to become unstable. Therefore, an engineer should choose the appropriate yield strength and horizontal stiffness in consideration of the safety and efficiency of the structure when a mid-story isolation system for a high-rise building is designed.