• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.032 seconds

Seismic Capacity Evaluation of Low-Rise Reinforced Concrete Buildings in Korea (국내 저층 철근콘크리트 건물의 내진성능 평가)

  • Lee, Kang-Seok;Kim, Yong-In;Min, Kyung-Min
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.241-244
    • /
    • 2008
  • The authors proposed a new rapid-screening method for more reasonably evaluating seismic capacities of medium and low-rise RC buildings controlled by both shear and flexure in Ref. [1]. The method proposed in Ref. [1] was based on relationships between required strengths of each failure system for ductility factors and damage degrees of overall system derived from the view-point of ductility factors. The proposed method was also verified using observed real damage data of low-rise RC buildings caused by past earthquakes. Results indicated that the methodology proposed in Ref. [1] compares well with real damages and is a useful strategy for rapidly identifying low-rise RC buildings having high potential seismic risk. In this study, in order to verify the applicability of the new methodology proposed in Ref. [1] to real RC building systems, seismic capacities of existing eleven low-rise RC buildings in Korea are evaluated based on the new method.

  • PDF

A study on the fire resistance properties of high strength concrete by incorporation of Polymix fiber (폴리믹스 혼입에 의한 고강도 콘크리트의 폭렬방지 방안에 관한 연구)

  • Kim, Jeong-Jin;Lee, Sang-Hyun;Lee, Joo-Ho;Shin, Jae-Kyung;Park, Jong-Ho;Jeong, Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.395-396
    • /
    • 2010
  • The purpose of this research is that development of fire-high resistance concrete for high-rise buildings is carried out with a test, which is for confirmation of fire-resistance capacity of 80MPa high-strength concrete. In this test, self-developed Polymix to confirm fire-resistance capacity of high-strength concrete in domestic high-rise buildings recently is applied.

  • PDF

A Study on the Plan Characteristics and Unit Floor Type Through the Zoning Analysis of High-rise Residential Buildings (초고층 주상복합 건축물에서 조닝분석을 통한 단위세대 평면 유형 및 계획특성에 관한 연구)

  • Sung, Lee-Yong
    • Korean Institute of Interior Design Journal
    • /
    • v.21 no.6
    • /
    • pp.54-61
    • /
    • 2012
  • The aim of this study is to understand the plan characteristics used in unit floor planning mainly with examples of mixed-use residential tall buildings. The study will extract plan characteristics mainly using the graph expressive technique with essential information of the zoning function of residential space, rather than merely analyzing the various construction floor plans by type. The research method involves studying a group of 50-story buildings (over 200 meters) which were built between 2002 and 2008. Among 6 high-rise residential buildings case, we extract the most preferred type from 34 types, And then we simply classify rooms in 3 zoning, the master, living and children's zones. Finally we analyze the correlation among 3 simple zone and then extract some model type. The results of this study revealed three main findings. First, using the 3 functional zones, the shape of the main building and the unit floor plan can be analyzed simply even when they appear to be complicated. Second, we can extract common features when we analyze the unit floor plan from the viewpoint of the penetrability among 3 zoning. Third, we can extract 2 types when we analyze the unit floor plan from the viewpoint of 3 connected functional zoning concepts.

  • PDF

Optimization of Sky-Bridge location at coupled high-rise buildings considering seismic vulnerability functions

  • Arada, Ahmad Housam;Ozturk, Baki;Kassem, Moustafa Moufid;Nazri, Fadzli Mohamed;Tan, Chee Ghuan
    • Structural Engineering and Mechanics
    • /
    • v.82 no.3
    • /
    • pp.385-400
    • /
    • 2022
  • Sky-bridges between adjacent buildings can enhance lateral stiffness and limit the impact of lateral forces. This study analysed the structural capabilities and dynamic performances of sky-bridge-coupled buildings under various sets of ground motions. Finite Element (FE) analyses were carried out with the link being iteratively repositioned along the full height of the structures. Incremental dynamic analysis (IDA) and probabilistic damage distribution were also applied. The results indicated that the establishment of sky-bridges caused a slight change in the natural frequency and mode shapes. The sky-bridge system was shown to be efficient in controlling displacement and Inter-Storey Drift Ratio (%ISDR) and reducing the probability of damage in the higher floors. The most efficient location of the sky-bridge, for improving its rigidity, was found to be at 88% of the building height. Finally, the effects of two types of materials (steel and concrete) and end conditions (hinged and fixed) were studied. The outcomes showed that coupled buildings with a sky-bridge made of steel with hinged connection could withstand ground motions longer than those made of concrete with fixed connection.

Robustness Design For Tall Timber Buildings

  • Voulpiotis, Konstantinos;Frangi, Andrea
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.3
    • /
    • pp.245-253
    • /
    • 2020
  • With the ever-increasing height of timber buildings, the complexity of timber as a structural material gives rise to behaviors not previously studied by engineers. An urgent call is needed regarding their performance in damage scenarios: activating alternative load paths in tall timber buildings is not the same as in tall buildings made with steel and concrete. In this paper we propose a robustness framework covering all building materials, whose application in timber may lead to new conceptual designs for the next generation of tall timber buildings. Qualitatively, the importance of building scale and the distinction between localized and systematic exposures are discussed, and how existing supertall structures can be an example for future generations of tall timber buildings. Quantitatively, the robustness index is introduced alongside a method to calculate the performance of a given building regarding robustness, in order to find the most cost-effective structural solutions for improved robustness. A three-level application recommendation is made, depending on the importance of the building in question. Primarily, the paper highlights the importance of conceptual design to achieve structural robustness and encourages the practicing engineering community to use the proposed framework to quantitatively come up with the new generation of tall timber buildings.

A Study on the Pre-fabrication of Three-story Column Re-bars for Saving Construction Time of High-rise Buildings (초고층 건물 공기단축을 위한 기둥철근 3개층 선조립공법에 관한 연구)

  • Kim, Gwang Hee;Kim, Jae Yeob;Seo, Deok Seok;An, Sung Hoon;Choi, Hee Bok;Jung, Beong Won
    • KIEAE Journal
    • /
    • v.7 no.2
    • /
    • pp.39-46
    • /
    • 2007
  • A high-rise building construction in Korea has some problems in engineering, construction and management technologies although the high-rise building construction is recently booming. In addition, the lack of skilled construction labors is increasing, so the development for methods is needed to reduce the labors by prefabrication and mechanization. A re-bar work is one of very important works with regard to cost and schedule management in the high-rise building construction. Nevertheless, the re-bar work has some problems that it is needed many re-bars for joints linking and much time for lifting due to high-rise buildings, and it is difficult to level the skill of labors. So, in this study, the pre-fabrication of three-story height in column re-bars is proposed and the results of an implementation are analyzed and explored by a case study. As the results of case study, the pre-fabrication of three-story heights in column re-bars could reduce the cost in the re-bar work and accelerate the time in the structural frame work. In addition, the pre-fabrication of three-story height in column re-bars could solve the problems such as the waste of many re-bars for joints linking, and the lack of the skilled labors.

Influence of Predominant Periods of Seismic Waves on a High-rise Building in SSI Dynamic Analyses with the Complete System Model (연속체 모델에 기초한 SSI 동적해석 시 지진파 탁월주기가 초고층 건물에 미치는 영향)

  • You, Kwangho;Kim, Juhyong;Kim, Seungjin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.12
    • /
    • pp.5-14
    • /
    • 2019
  • Recently in Korea, researches on seismic analyses for high-rise buildings in a large city have been increasing because earthquakes have occurred. However, the ground conditions are not included in most of seismic researches and analyses on a high-rise building. Also the influence of the predominant period of a seismic wave is not considered in reality. Therefore, in this study, the influence of the predominant period of a seismic wave on the dynamic behavior of high-rise buildings was analyzed based on the complete system model which can consider the grounds. For this purpose, 2D dynamic analyses based on a linear time history analysis were performed using MIDAS GTS NX, a finite-element based program. Dynamic behavior was analyzed in terms of horizontal displacements, drift ratios, bending stresses, and building weak zones. As a result, in overall, the dynamic response of a high-rise building become bigger as the predominant period of a seismic wave become longer. It was also found that the predominant period had a greater influence than other parameters, ground conditions and peak ground acceleration.

Construction Sequence Analysis for Checking Stability in High-Rise Building under Construction (초고층 건물의 시공 중 안정성 검토를 위한 시공단계해석)

  • Kim, Jae-Yo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.618-623
    • /
    • 2008
  • Due to recent trends of the atypical plan shapes and the zoning construction in high-rise buildings, the building stability under construction is arising as an important issue for design and construction plan. To ensure the stability under construction, the differential column shortening and the lateral movements with unbalanced distributions of self-weight of structure members and the load flows before completion of member connections and lateral load resisting system should be checked by construction sequence analysis. This paper presents the scheme of zone-based construction sequence analysis, to check the stability of high-rise building under construction. This scheme is applied to the construction sequence analysis for real high-rise building under construction.

  • PDF

Large-scale Seismic Response Analysis of Super-high-rise Steel Building Considering Soil-structure Interaction using K computer

  • Miyamura, Tomoshi;Akiba, Hiroshi;Hori, Muneo
    • International Journal of High-Rise Buildings
    • /
    • v.4 no.1
    • /
    • pp.75-83
    • /
    • 2015
  • In the present study, the preliminary results of a large-scale seismic response analysis of a super-high-rise steel frame considering soil-structure interaction are presented. A seismic response analysis under the excitation of the JR Takatori record of the 1995 Hyogoken-Nanbu earthquake is conducted. Precise meshes of a 31-story super-high-rise steel frame and a soil region, which are constructed completely of hexahedral elements, are generated and combined. The parallel large-scale simulation is performed using K computer, which is one of the fastest supercomputers in the world. The results are visualized using an offline rendering code implemented on K computer, and the feasibility of using a very fine mesh of solid elements is investigated. The computation performance of the analysis code on K computer is also presented.

Development of a Vertically Moving Scenario of Robotic Exterior Wall Cleaning for High-rised Building (고층 건축을 위한 수직외벽 청소로봇의 작업 시나리오 개발)

  • Kim, Kyoon-Tai;Kim, Chang-Han;Han, Jae-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.11a
    • /
    • pp.195-196
    • /
    • 2011
  • Recently, the number of high-rise buildings has been on the rise, which has meant that maintenance cost has increased by two and three times, along with the increase in the construction cost. It is suggested that the use of an auto-cleaning robot could increase the productivity and safety of cleaning work, which is mostly done outside of a building. In particular, the guide rail on a high-rise building could be useful in this capacity, as it has the advantage of not being significantly influenced by factors of the external environment, including wind pressure. For this reason, this research is preliminary research into a cleaning automation for a high-rise building, and aims to draw up a scenario for the vertically moving robot.

  • PDF