• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.033 seconds

The Future of Workplace in Vertical Cities: Hanging Gardens, Roof Terraces and Vertical Plazas

  • Reinke, Stephan C.
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.1
    • /
    • pp.71-79
    • /
    • 2020
  • As the workplace evolves in our vertical cities, the need for "think spaces" and the public realm to meet, create and innovate will become integral to tall buildings. These people places are designed to address the social challenges and enhance the co-working environments which are emerging in the dense urban context of our future cities. The design of sky terraces and the "spaces between" offer a greener, more humane and smarter work environment for the future. The public realm should no longer be held down, fixed to the ground plane, but rather become part and parcel of the upper levels of our workplace centers. These collective spaces in our workplace centers must provide a three dimensional matrix of connected and identifiable platforms to leverage the open and progressive future way of working. This will enable social networking and idea sharing, and create multi-dimensional, multi-level business incubators for innovation and creativity. The BCO ( British Council of Offices) has performed a landmark Wellness Matters Report which provides an exemplary roadmap for the future of the workplace. Our future vertical cities must also provide for serendipity in the workplace; a key attribute to drive the information exchange and collaboration that are proven to provide positive and progressive business outcomes. In addition to demonstrating examples of existing built work and the concept of the integrated vertical public realm, the presentation also will consider and define wellness in the workplace as a critical factor in our design strategies and our future workplace environments Hanging Gardens, Roof Terraces and the Vertical Plazas; designed for interchange, wellness, animation and collaboration.

A Study on the Passive House Technology Application of University Dormitory through The House at Cornell Tech (코넬 공과대학 기숙사 사례를 통한 대학 기숙사의 패시브 하우스 기술 적용에 관한 연구)

  • Kim, Hong-Min;Oh, Hyoung-Seok;Ryu, Soo-Hoon
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.25 no.4
    • /
    • pp.11-18
    • /
    • 2018
  • Global warming is happening now and inevitable. Everyone knows that immediate action should be taken to slow it down, but uncertain about the effective solution. Despite global efforts to reduce greenhouse gas emissions, sea levels are rising gradually. In 2013, Cornell University announced the Climate Action Plan(CAP) to make the campus greener, to reduce waste, and to ensure efficient use of resources. In particular, they set a goal of reducing energy use by 2050 and making carbon emissions to zero. Accordingly, the purpose of this study is to analyse the case of the master plan of Cornell Tech campus and its major buildings. Mainly, The House, faculty and student housing of Cornell Tech and the world tallest certified passive house, will be the main precedent that shows the architectural planning of passive house. Passive house technology, which was thought to be possible only in single-family houses, can be applied to high-rise buildings. If any passive house technology of The House project is actively introduced into the dormitory projects of domestic universities that are about to be built or renovated, it will be a good opportunity for the university to take the lead in preparing for global warming.

The Field Measurement of Airtightness in the Apartment Buildings (신축공동주택의 기밀성능 실측에 관한 연구)

  • Park, Won seok;Yoon, Jae Ock
    • KIEAE Journal
    • /
    • v.3 no.3
    • /
    • pp.43-50
    • /
    • 2003
  • Nowdays the apartment is a main type of modernized residential buildings. According to the improvement of construction techniques and functions of windows and doors, recent apartments are enhanced air tightness of windows, doors and building envelopes. As Infiltration is decreased and natural ventilation is reduced, energy could be saved in winter. However, indoor air quality is bad. The air Infiltration of a building could be enlarged by physical actions, such as building designs, constructions and reduction of air tightness which is caused by aging. This research analyzes and measures with KNS-4000P (Sapporo air tightness measurement) the air tightness of the high rise apartments which is recently constructed and not occupied yet. With depressurization method, the KNS-4000 installed on the window and the indoor air-leakage was measured. At that time, Air come out from the edge of the windows and doors because of the pressure differences between indoor and outdoor. We measure the amount of the air as effective air leakage areas. This method of depressurization takes less time to measure than other methods and is less affected from other conditions. We measured infiltration of total 56 household, 29 households S apartment (total floor area : $64.42m^2$) in Balan and 29 households D apartment(total floor area : $78.21m^2$) in Chonan. As a result of the field measurements at October 2003, normalized leakage area of D apartment in Cheonan was $2.05cm^2/m^2{\sim}3.49cm^2/m^2$ (average: $2.77cm^2/m^2$) and normalized leakage area of S apartment in Balan is $1.23cm^2/m^2{\sim}1.68cm^2/m^2$ (average: $1.5cm^2/m^2$).

An Assessment of Field Application of Elementary Technology for Reducing Construction Duration in the Apartment Housing Construction (공동주택 골조공기단축을 위한 요소기술의 현장 적용성 평가)

  • Kim, Kyu-Hoi;Park, Moon-Seo;Lee, Hyun-Soo;Park, Song-Woo;Joo, Sun-Woo
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • 2007.11a
    • /
    • pp.368-372
    • /
    • 2007
  • Recently, construction companies prefer to use large scale system forms to prepare for lacking of skilled workers, aging and the chances of application of pre-build&post-sale policy. In result of the effort and interest, the duration for framework of domestic high rise buildings has been accomplished to 3-4days per floor but for the apartment housing which form over 90% of the domestic construction industry, and especially the middle story RC apartments which is the main part, the duration for framework is only about 6-8days per level. This is only about 50% of the duration per level of RC residential buildings in North America. In previous researches elementary technology, which has potential of duration reduction, was proposed and this research suggest the applicability in construction sites and ways to improve it using elementary technology applied Mock-up Test. Furthermore, we analyze the productivity and T/C usage rate of the 6day-Cycle and suggest an improved model.

  • PDF

Analysis of Indoor Air & thermal environment with Hybrid Ventilation system during summer (하계 공동주택 하이브리드 환기시스템 적용에 따른 실내공기 및 열 환경 평가)

  • Kim, Sang-Jin;Kim, Eun-Soo;Kim, Tae-Yeon;Leigh, Seung-Bok
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.387-392
    • /
    • 2006
  • The recent on indoor air problem has led to many studies on the methods and effects of ventilation for better indoor air quality. Although natural ventilation is the most effective and energy-saving method in residental housings, the small size of openable window has been a problem in high-rise residential buildings to ventilate only through natural ventilation. Consequently, the installation of mechanical ventilation system has been a requirement in residential buildings, and has caused other problems such as increase of energy consumption and SBS. Hybrid ventilation which uses forces of both natural and mechanical power has been introduced to solve the problem of increase in energy consumption with natural ventilation. In this paper, two types of hybrid ventilation systems in residential building were introduced. One type was with natural ventilation through vent grille in the window, and another type was with natural ventilation through ceiling duct while both types used mechanical ventilation system with the outlets. The indoor temperature distribution and pollution density distribution in summer while operating the ceiling air conditioner were analyzed through CFD simulation. In this paper, the optimal location of diffusers to achieve thermal comfort would be proposed.

  • PDF

A Study on Establishment of Performance-Based Design Direction through Analysis of Expert Survey (전문가 설문조사를 통한 국내 성능위주설계 개선 방향설정에 관한 연구)

  • Jeong, Hye-Min;Hong, Won-Hwa;Son, Jong-Yeong;Jeon, Gyu-Yeob
    • Journal of the Architectural Institute of Korea Planning & Design
    • /
    • v.34 no.2
    • /
    • pp.23-31
    • /
    • 2018
  • In recent years, as the development of construction technology and population increase, buildings are becoming more complex and high-rise. These large scale buildings are difficult to secure fire and evacuation safety when fire occurs. So it is necessary to prepare specific measures. According to this situation, in 2011, Republic of Korea officially launched Performance-based Design in "Fire-fighting system Installation business Act". But even 6 years passed since the enforcement, there are still faces manifold problems in the course of implementation. In order to examine the necessary improvements, in this study, I conducted interviews and questionnaires with experts, investigated the improvement items under current laws. And draw up a measures for that items. The subjects of the survey were fire-fighting officer, professional engineer fire fighting, fire protection planner and professor in Daegu. As a result of twice surveys, a total of 19 items are derived. And then compared and analyzed the criteria of overseas countries, and suggested improvement directions for final items. In addition, conducted a third questionnaire survey on the proposed improvement direction to verify the appropriateness of the alternative. The results of this study will be used as basic data to deal with the general problems of performance-based design in future, and further study on each item will be needed.

The First Skyscraper Revisited

  • Ali, Mir M.;Moon, Kyoung Sun
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • Debates on what is the first skyscraper have been ongoing from time to time since the construction of the Home Insurance Building in Chicago in 1885, which is generally recognized as the first built skyscraper. This paper attempts to verify this assertion through a detailed investigation after identifying the criteria that characterize a skyscraper. By considering and examining several competing buildings for the title of "first skyscraper" in terms of their levels of satisfying these criteria, the paper reconfirms that the Home Insurance Building in Chicago indeed qualifies as the first skyscraper and is the harbinger of future skyscrapers. By introducing technological and associated architectural innovations in this pioneering building, its designer William Le Baron Jenney paved the way for the construction of future skyscrapers. In traditional construction, heavy masonry walls especially at lower levels did not allow large window openings in exterior walls that would permit ample daylight. For the Home Insurance Building, originally built with 10 stories, Jenney created a metal-framed skeletal structure that carried the building's loads, making the building lighter and allowed for large windows permitting ample natural light to the building's interior. The exterior iron columns were encased in relatively small masonry piers mainly for fireproofing, weather-protection and façade aesthetics. Relying on the structural framing on the building's perimeter, the exterior masonry thus turned into a rudimentary "curtain wall" system, heralding the use of curtain wall construction in future skyscrapers. This building's innovative structural system led to what is known as the "Chicago Skeleton," and eventually produced remarkable skyscrapers all over the world.

Study on steel plate shear walls with diagonal stiffeners by cross brace-strip model

  • Yang, Yuqing;Mu, Zaigen;Zhu, Boli
    • Structural Engineering and Mechanics
    • /
    • v.84 no.1
    • /
    • pp.113-127
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are commonly utilized to provide lateral stiffness in high-rise structures. The simplified model is frequently used instead of the fine-scale model in the design of buildings with SPSWs. To predict the lateral strength of steel plate shear walls with diagonal stiffeners (DS-SPSWs), a simplified model is presented, namely the cross brace-strip model (CBSM). The bearing capacity and internal forces of columns for DS-SPSWs are calculated. In addition, a modification coefficient is introduced to account for the shear action of the thin plate. The feasibility of the CBSM is validated by comparing the numerical results with theoretical and experimental results. The numerical results from the CBSM and fine-scale model, which represent the bearing capacity of the DS-SPSW with varied stiffened plate dimensions, are in good accord with the theoretical values. The difference in bearing capacity between the CBSM and the fine-scale model is less than 1.35%. The errors of the bearing capacity from the CBSM are less than 5.67% when compared to the test results of the DS-SPSW. Furthermore, the shear and axial forces of CBSM agree with the results of the fine-scale model and theoretical analysis. As a result, the CBSM, which reflects the contribution of diagonal stiffeners to the lateral resistance of the SPSW as well as the effects on the shear and axial forces of the columns, can significantly improve the design accuracy and efficiency of buildings with DS-SPSWs.

Numerical investigation of wind interference effect on twin C-shaped tall buildings

  • Himanshoo Verma;R. S. Sonparote
    • Wind and Structures
    • /
    • v.37 no.6
    • /
    • pp.425-444
    • /
    • 2023
  • This study is to investigate the effect of interference between two C-shaped high-rise buildings by computational fluid dynamics (CFD), focusing on the variation of the local pressure coefficient (CP) and the mean pressure coefficient (CPMEAN). Sixteen building position cases are considered for the present study. These cases were based on the position and height of the interference building (IB). The pressure coefficient (CP) is calculated on the principal building (PB) and is compared with an isolated building identical in shape and size. The interference effect on PB has also been presented in reference for the interference factor (IF). According to the findings, the maximum force coefficient on the PB is 0.971 and it is 10.97% more than the isolated PB when IB is located at position 2b (two times the width of the building), and the interfering height of 13H/15 mm. The moment coefficient on PB is 1.27, which is 27.36% less than the isolated case in which IB pushed 2b to 3b in the y direction with 750 mm height. In most of the cases, because of the shielding effect of the IB, the value of force coefficient (CF) on PB has been reduced. On the face of the PB, there are also considerable differences in the mean pressure coefficient CPMEAN. When IB was positioned at a location of 2b in Y direction and an interfering height of 13H/15 mm, the maximum CPMEAN (1.58) was observed on the leeward face of PB.

Crack Damages in Exterior Wall Structures of Korean High-Rise Apartment Buildings Based on Nonlinear Finite Element Analysis (비선형 유한요소해석 기반 국내 고층아파트 외벽구조의 균열손상 특성 분석)

  • Kim, Sung Hyun;Mo, Sang Yeong;Kim, Si Hyun;Choi, Kyoung Kyu;Kang, Su Min
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.47-57
    • /
    • 2024
  • Recently, in newly constructed apartment buildings, the exterior wall structures have been characterized by thinness, having various openings, and a significantly low reinforcement ratio. In this study, a nonlinear finite element analysis was performed to investigate the crack damage characteristics of the exterior wall structure. The limited analysis models for a 10-story exterior wall were constructed based on the prototype apartment building, and nonlinear static analysis (push-over analysis) was performed. Based on the finite element (FE) analysis model, the parametric study was conducted to investigate the effects of various design parameters on the strength and crack width of the exterior walls. As the parameters, the vertical reinforcement ratio and horizontal reinforcement ratio of the wall, as well as the uniformly distributed longitudinal reinforcement ratio and shear reinforcement ratio of the connection beam, were addressed. The analysis results showed that the strength and deformation capacity of the prototype exterior walls were limited by the failure of the connection beam prior to the flexural yielding of the walls. Thus, the increase of wall reinforcement limitedly affected the failure modes, peak strengths, and crack damages. On the other hand, when the reinforcement ratio of the connection beams was increased, the peak strength was increased due to the increase in the load-carrying capacity of the connection beams. Further, the crack damage index decreased as the reinforcement ratio of the connection beam increased. In particular, it was more effective to increase the uniformly distributed longitudinal reinforcement ratio in the connection beams to decrease the crack damage of the coupling beams, regardless of the type of the prototype exterior walls.