• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.025 seconds

The effect of rectangular and T-shaped stiffeners on the seismic performance of CFDT columns

  • Mojtaba Labibzadeh;Keyvan Parsa;Farhad Hosseinlou;Majid Khayat
    • Earthquakes and Structures
    • /
    • v.27 no.3
    • /
    • pp.191-207
    • /
    • 2024
  • Due to the many advantages of concrete-filled double steel tube (CFDT) columns, they are highly recommended for use in heavy-load structures such as bridges, subway stations, and high-rise buildings. This study was carried out with the aim of numerically investigating and comparing the performance of CFDT columns under cyclic and seismic loads and providing innovative strengthening methods for CFDT columns. Hollow circular steel sections have been used for internal and external tubes. To make the circular CFDT columns stronger against seismic loads, stiffeners with different shapes (rectangular and T-shaped sheets) have been welded to the outside and inside tubes. The validated finite element (FE) model of the ABAQUS program is used to look into the behavior of CFDT columns numerically. Two frames of 10 and 20 floors with strengthened CFDT columns were modeled. The results showed that the use of stiffeners in the CFDT column has a significant effect on seismic performance, so that the maximum lateral load of the column is increased up to 32.74% under the effect of cyclic load. Also, the results revealed that the use of stiffeners in the columns of moderate and high-rise building frames causes a significant increase in the shear of the base and consequently the stiffness. Among the other important results that followed, it reduced the drift of floors and increased energy absorption.

Radiation Flux Impact in High Density Residential Areas - A Case Study from Jungnang area, Seoul - (고밀도 주거지역에서의 복사플럭스 영향 연구 - 서울시 중랑구 지역을 대상으로 -)

  • YI, Chae-Yeon;KWON, Hyuk-Gi;Lindberg, Fredrik
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.26-49
    • /
    • 2018
  • The purpose of this study was to verify the reliability of the solar radiation model and discuss its applicability to the urban area of Seoul for summer heat stress mitigation. We extended the study area closer to the city scale and enhanced the spatial resolution sufficiently to determine pedestrian-level urban radiance. The domain was a $4km^2$ residential area with high-rise building sites. Radiance modelling (SOLWEIG) was performed with LiDAR (Light Detection and Ranging)-based detailed geomorphological land cover shape. The radiance model was evaluated using surface energy balance (SEB) observations. The model showed the highest accuracy on a clear day in summer. When the mean radiation temperature (MRT) was simulated, the highest value was for a low-rise building area and road surface with a low shadow effect. On the other hand, for high-rise buildings and vegetated areas, the effect of shadows was large and showed a relatively low value of mean radiation temperature. The method proposed in this study exhibits high reliability for the management of heat stress in urban areas at pedestrian height. It is applicable for many urban micro-climate management functions related to natural and artificial urban settings; for example, when a new urban infrastructure is planned.

Effect of Shading Levels on the Soil Properties, Growth Characteristics, and Chlorophyll Contents of Ligularia stenocephala (차광정도가 곤달비의 토양변화, 생육상황 및 엽록소 함량에 미치는 영향)

  • Park, Byoung-Mo;Kim, Chang-Hwan;Bae, Jong-Hyang;Shin, Jung-Ryeul
    • Journal of Bio-Environment Control
    • /
    • v.20 no.4
    • /
    • pp.352-356
    • /
    • 2011
  • It is true that the industrial development has usually been accompanied with urbanization or centralization of population that has inevitably led to high-rise buildings and densely built-up living area in the cities. While it is badly needed to acquire as much green land within the city limits as possible to compensate for reduced space for recreational purpose in parallel with increasingly urbanized area, the living conditions of plants have become seriously devastated due to shortage of sun light walled-off by high-rise buildings and contaminated environment and air. The shade that is generated by high-rise and compact buildings hinders growth of plants, which makes it urgent to develop native ground cover plant that is strongly viable in the shade. For this purpose, Ligularia stenocephala, best known as greens for Ssam (rice and condiments wrapped in leaves) was cultivated under the 30%, 50%, and 80% shadings and observed to see if there would be any changes in soil conditions, growth of plants and chlorophyll contents depending on the shading rate. The leaf number was 10.8 pieces under the 50% shading and 8.4 under the 30%-shading, 7.7 pieces more than that cultivated under lighting. The leaf width turned out to be excellent from cultivation under the 50%- shading, an evidence indicating its possibility of being cultivated as native ground cover plant in the shade. The live weight of the plants cultivated under the shading increased to 31.63 g, 43.39 g and 19.40 g, respectively, compared to 90.43 g of those in the untreated control plot. The increase in growth of roots was particularly significant with 48.48 g in comparison to 12.33 g under 30% shading cultivation. The chlorophyll synthesis amounted to 46.2 under the 50% shading, showing an increase compared to 41.9 under lighting. The chlorophyll synthesis rather shrank under other shading conditions. The cultivation of Ligularia stenocephala under the 50% shading showed the best condition in growth as native ground cover plant.

An Experimental Study on the Estimation for the Flow Coefficient of Elevator Hoistway (엘리베이터 승강로의 유량계수 산정에 관한 실험 연구)

  • Kim, Hak-Joong
    • Fire Science and Engineering
    • /
    • v.26 no.1
    • /
    • pp.43-48
    • /
    • 2012
  • Recently, evacuation safety of building resident become the major concern, as the building has been higher and more complicated. Required evacuation time using stairway is longer in high-rise buildings, moreover it is impossible for the disabled to evacuate by using stairway. For this reason the study on the effectiveness of using elevator for evacuation is progressing. This study shows the flow coefficient of hoistway when elevator is moving. The results of this study can be used for the study of elevator piston effect as basic data. Experiments were performed in 5 different hoistways at 3-story and 2-story buildings. According to the result of flow coefficient experiments, average flow coefficient is 0.954. Considering the $4{\sigma}$ to guarantee 99.99 % reliance, it is 0.86. This result is 3.6 % bigger than 0.83 that Klote and Tamura suggested. It represents that the maximum critical pressure is decreased about 7 % on the same condition of elevator and elevator shaft. When the smoke control performance of high-rise building is evaluated, the result is significant economically by applying a more realistic and less value of elevator piston effect.

An Structural Design for Cyclone Tower's Connections Using Diagrid System (다이아그리드 구조시스템의 접합부개발과 성능평가)

  • Lee, Se-Jung;Lee, Seong-Hui;Kim, Jin-Ho;Choi, Sung-Mo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.10 no.2
    • /
    • pp.105-115
    • /
    • 2010
  • Recently, High-rise building are irregular-shaped to be city landmarks and function as vertical cities to enable the efficient use of land. 3T (Twisted, Tilted & Tapered) designs are being suggested for irregular buildings and studies to develop new structural system have been actively made to satisfy slender shape ratio. In diagrid system, not only gravity load but also lateral load is delivered based on the triangular shape of diagrid, so most of columns are eliminated. Because shearing force is delivered by the axial behavior (tensile/compressive) of diagrid to minimize shearing deformation, the system is more applicable to irregular buildings than existing system where shearing force is delivered by the columns. In this study, the process of selecting connection details and the structural safety of the selected details are verified using the finite element analysis with focus given to the construction overview of the Cyclone Tower. However, the relersed methods of stress concentration are suggested and the performance of stress concentration relieves that it's suggested for the appropriate cap plate thickness and extended length.

  • PDF

Characteristics of Building Structural System with IsoTruss® Grid (IsoTruss® 그리드를 적용한 건물구조시스템의 특성)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.737-742
    • /
    • 2017
  • Recently, unconventional high-rise building shapes have attracted attention as a landmark of metropolitan cities and the search for innovative building forms in architecture is ongoing. In this study, $Isotruss^{(R)}$ grid(ITG) used in smaller scale structures was applied to building structural systems and its structural performance was examined. The structural behavior of an ITG was compared with that of a diagrid structure as a reference structure. The stiffness-based design method of the diagrid system was used for the preliminary design stage of member sizing in an ITG. The structural design of 16, 32, and 48-story buildings was carried out for the two systems with the same size. The angle of the inclined columns for ITG and diagrid was $59^{\circ}$ and $68.2^{\circ}$, respectively. The lateral stiffness, steel tonnage of the exterior frame, axial strength ratio, story drift ratio, and natural frequency of the two systems were compared. Based on the analysis result of 6 buildings, the two systems had similar structural capacity; 93.3% and 88.7% of the lateral load was carried by the perimeter frame in the ITG system and diagrid system, respectively. This suggests that the ITG system is better in arranging core columns. Therefore, the proposed ITG system has not only a unique façade, but also substantial structural capacity equivalent to the existing system.

Fragility Analysis of RC Moment Resisting Frame with Masonry Infill Walls (비내력벽을 가진 RC모멘트저항골조의 취약도 해석)

  • Ko, Hyun;Park, Yong-Koo;Lee, Dong-Guen
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.22 no.4
    • /
    • pp.355-362
    • /
    • 2009
  • Many of residential buildings, which have pilotis in lower stories to meet the architectural needs, are recently constructed in Korea. Usually, infill walls located in the upper stories of these buildings may cause a soft first story, which is very weak from the earthquake resistance. In the design of the buildings, the infill walls of upper stories are usually considered as non-structural elements and thus they are not included in the analytical model. However, the infill walls may affect the seismic behavior of the residential buildings. Therefore, the differences in seismic behaviors of RC buildings with and without masonry infill walls are required to be investigated. In this study, seismic fragility analyses were performed for masonry infilled low-rise RC moment-resisting frames. And seismic behaviors of RC moment-resisting frame with/without masonry infill walls were evaluated. Two types of structural system with the same frame and different allocation of infill walls are used to evaluate the influence of masonry infill walls on seismic behavior of RC moment-resisting frames. The infill walls were modeled as bi-equivalent diagonal struts. The fragility analyses show that the seismic performance of RC moment-resisting frames with soft story is below the desirable building seismic performance level recommended by current seismic codes, indicating high vulnerability of RC moment-resisting frames with soft story.

Experimental and analytical investigation of composite columns made of high strength steel and high strength concrete

  • Lai, Binglin;Liew, J.Y. Richard;Xiong, Mingxiang
    • Steel and Composite Structures
    • /
    • v.33 no.1
    • /
    • pp.67-79
    • /
    • 2019
  • Composite columns made of high strength materials have been used in high-rise construction owing to its excellent structural performance resulting in smaller cross-sectional sizes. However, due to the limited understanding of its structural response, current design codes do not allow the use of high strength materials beyond a certain strength limit. This paper reports additional test data, analytical and numerical studies leading to a new design method to predict the ultimate resistance of composite columns made of high strength steel and high strength concrete. Based on previous study on high strength concrete filled steel tubular members and ongoing work on high strength concrete encased steel columns, this paper provides new findings and presents the feasibility of using high strength steel and high strength concrete for general double symmetric composite columns. A nonlinear finite element model has been developed to capture the composite beam-column behavior. The Eurocode 4 approach of designing composite columns is examined by comparing the test data with results obtained from code's predictions and finite element analysis, from which the validities of the concrete confinement effect and plastic design method are discussed. Eurocode 4 method is found to overestimate the resistance of concrete encased composite columns when ultra-high strength steel is used. Finally, a strain compatibility method is proposed as a modification of existing Eurocode 4 method to give reasonable prediction of the ultimate strength of concrete encased beam-columns with steel strength up to 900 MPa and concrete strength up to 100 MPa.

A Study on the Unit Block Types and Physical Characteristics of Individual Residential Area in Seoul (도시단독주택지(都市單獨住宅地) 단위(單位)블록의 유형화(類型化)와 이의 물리적(物理的) 특성(特性)에 관한 연구(硏究))

  • Jun, Byung-Kwun
    • Journal of the Korean housing association
    • /
    • v.18 no.3
    • /
    • pp.125-136
    • /
    • 2007
  • To improve the environment of individual residential area, the uniform development of multiple dwellings through site should be avoided. As an alternative to a large scale development of the currently popular high-density and high-rise apartment buildings, which disintegrates and destroys existing communities, a new residential type that is applicable to the individual residential area should be developed. From the new residential type, even for short history of Korea of modem urban residence, a new concept of residence can be formed, changing from the concept of a temporary staying place to the concept of a stable residing place. Also, a gradual improvement that transcends time can be expected, and the present and past appearances can co-exist. This study was conducted to suggest a new residential type with unit blocks that can improve the physical structure of existing individual residential area without destroying the structure. That is, among the factors that comprise the individual residential area, this study will focus on the unit block with a medium role between a site and a mega-block, and will suggest a new concept of residential unit in order not to destroy its physical structure. The physical characteristics of the unit block will also be analyzed.

The Comparison of Using State of Greenery Space in Front of One Story Veranda in Apartment Complex (아파트 단지 1층 베란다 앞 녹지공간 사용실태 비교)

  • Kim, Dae-Hyun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.3 no.2
    • /
    • pp.1-9
    • /
    • 2000
  • Recently, the number of unsold apartments has been increasing, and apartment furnishing companies have tried a marketing strategy by utilizing the outdoor space for differentiation. There are many differentiation strategies. One of them is to improve the dwellings-on-ground space in apartment complex. Owing to the high density and high-rise of apartment buildings, the dwellings-on-ground apartment complex have been recognized as not good housing by residents in korea. The precedent study on the responses from residents showed the negative effects mainly due to sunlight, daylight, view and privacy and the positive effects from good accessibility and good environment for children and elderly people. The purpose of this study was to improve the dwellings-on-ground space and to suggest the most appropriate type of the dwellings-on-ground space through the residents' desires and preferences. In this point of view, this study shows three results for the design improvement: 1) Providing private gardens and individual accesses to the dwellings-on-ground. 2) Providing private garden with flower bed to intensify the visual aspect. 3) Furnishing variable transformation of unit plan in dwellings-on-ground, for example, maisonette, etc.

  • PDF