• Title/Summary/Keyword: high rise buildings

Search Result 1,539, Processing Time 0.028 seconds

Equipment and Worker Recognition of Construction Site with Vision Feature Detection

  • Qi, Shaowen;Shan, Jiazeng;Xu, Lei
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.335-342
    • /
    • 2020
  • This article comes up with a new method which is based on the visual characteristic of the objects and machine learning technology to achieve semi-automated recognition of the personnel, machine & materials of the construction sites. Balancing the real-time performance and accuracy, using Faster RCNN (Faster Region-based Convolutional Neural Networks) with transfer learning method appears to be a rational choice. After fine-tuning an ImageNet pre-trained Faster RCNN and testing with it, the result shows that the precision ratio (mAP) has so far reached 67.62%, while the recall ratio (AR) has reached 56.23%. In other word, this recognizing method has achieved rational performance. Further inference with the video of the construction of Huoshenshan Hospital also indicates preliminary success.

Long-term Mechanical Behavior of CFRP-strengthened Steel Members for a Truss Tower

  • Nakamoto, Daiki;Yoresta, Fengky Satria;Matsui, Takayoshi;Mieda, Genki;Matsuno, Kazunari;Matsumoto, Yukihiro
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.343-349
    • /
    • 2020
  • This research aimed to clarify the long-term mechanical performance of a steel truss member strengthened by a carbon fiber-reinforced polymer (CFRP) without protective coating through exposure testing. Strengthening and repair methods using CFRP have been developed in recent years; however, there is a lack of durability research for CFRP-strengthened members, especially mechanical performance investigation according to actual exposure testing. In this study, 10 CFRP-strengthening steel specimens were created in 2015, and elastic bending tests were conducted biannually. Eventually, although resin loss occurred due to environmental effects, the mechanical performance of CFRP-strengthened steel was not degraded, and we propose a calculation method of bending stiffness to evaluate the lower value of stiffness for design.

From Fragmented Development to Three-Dimensional and Coordinated Development - Research on Renewal Strategies of Existing Underground Commercial Space in Harbin

  • Xue, Minghui;Su, Yiming;Hu, Jiayu
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.1
    • /
    • pp.17-28
    • /
    • 2021
  • In Harbin, a network of underground commercial spaces has been developed to occupy spaces that were originally created as civil defense shelters. With the gradual extension of the local metro rail system, the existing underground commercial space is no longer an isolated regional development, but a space that represents "three-dimensional city" and coordinated development taking place in many Chinese cities. Based on the analysis of the unique development process taken in underground space of Harbin, this paper summarizes three characteristics of its early model of "fragmented development" of underground space. By conducting a comprehensive field research and survey, the researchers analyzed 472 questionnaires related to the development trend, and proposed multi-level synergistic elements for the renewal and development of underground commercial space. The paper concludes by discussing the trend of "three-dimensional and collaborative development," suitable for the development needs of the new era, and the corresponding development strategies for the renewal of underground space.

Study on Integrity Assessment of Pile Foundation Based on Seismic Observation Records

  • KASHIWA, Hisatoshi
    • International Journal of High-Rise Buildings
    • /
    • v.9 no.4
    • /
    • pp.369-376
    • /
    • 2020
  • Given the importance of quickly recovering livelihoods and economic activity after an earthquake, the seismic performance of the pile foundation is becoming more critical than before. In order to promote seismic retrofit of the pile foundations, it is necessary to develop a method for evaluating the seismic performance of the pile foundation based on the experimental data. In this paper, we focus on the building that was suffered severe damage to the pile foundation, conduct simulation analyses of the building, and report the results of evaluating the dynamic characteristics when piles are damaged using a system identification method. As a result, an analysis model that can accurately simulate the behavior of the damaged building during an earthquake was constructed, and it was shown that the system identification method could extract dynamic characteristics that may damage piles.

A Study of UWB Placement Optimization Based on Genetic Algorithm

  • Jung, Doyeon;Kim, Euiho
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.99-107
    • /
    • 2022
  • Urban Air Mobility (UAM) such as a drone taxi is one of the future transportations that have recently been attracting attention. Along with the construction of an urban terminal, an accurate landing system for UAM is also essential. However, in urban environments, reliable Global Navigation Satellite Systems (GNSS) signals cannot be received due to obstacles such as high-rise buildings which causes multipath and non-line of sight signal. Thus, the positioning result in urban environments from the GNSS signal is unreliable. Consequently, we propose the Ultra-Wideband (UWB) network to assist the soft landing of UAM on a vertiport. Since the positioning performance of UWB network depends on the layout of UWB anchors, it is necessary to optimize the layout of UWB anchors. In this paper, we propose a two-steps genetic algorithm that consists of binary genetic algorithm involved multi objectives fitness function and integer genetic algorithm involved robust solution searching fitness function in order to optimize taking into account Fresnel hole effects.

Active TMD systematic design of fuzzy control and the application in high-rise buildings

  • Chen, Z.Y.;Jiang, Rong;Wang, Ruei-Yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.21 no.6
    • /
    • pp.577-585
    • /
    • 2021
  • In this research, a neural network (NN) method was developed, which combines H-infinity and fuzzy control for the purpose of stabilization and stability analysis of nonlinear systems. The H-infinity criterion is derived from the Lyapunov fuzzy method, and it is defined as a fuzzy combination of quadratic Lyapunov functions. Based on the stability criterion, the nonlinear system is guaranteed to be stable, so it is transformed to be a linear matrix inequality (LMI) problem. Since the demo active vibration control system to the tuning of the algorithm sequence developed a controller in a manner, it could effectively improve the control performance, by reducing the wind's excitation configuration in response to increase in the cost efficiency, and the control actuator.

Dynamic Characteristics and Responses of Tall Building Structures with Double Negative Stiffness Damped Outriggers

  • Sun, Feifei;Duan, Ningling;Wang, Meng;Yang, Jiaqi
    • International Journal of High-Rise Buildings
    • /
    • v.10 no.3
    • /
    • pp.229-242
    • /
    • 2021
  • Dynamic characteristics of tall building structures with double negative stiffness damped outriggers (2NSDO) are parametrically studied using the theoretical formula. Compared with one negative stiffness damped outrigger (1NSDO), 2NSDO can achieve a similar maximal modal damping ratio with a smaller negative stiffness ratio. Besides, the 2NSDO can improve the maximum achievable damping ratio to about 30% with less consumption of an outrigger damping coefficient compared with the double conventional damped outriggers (2CDO). Besides, the responses of structures with 2NSDO under fluctuating wind load are investigated by time-history analysis. Numerical results show that the 2NSDO is effective in reducing structural acceleration under fluctuating wind load, being more efficient than 1NSDO.

Evolution of Skyscraper Block Typology Affected by Air Rights Development: A Case Study of Manhattan

  • Chao Weng;Yu Zhuang
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.19-33
    • /
    • 2023
  • Air Rights techniques, including floor-area ratio (FAR) transfers, FAR bonuses, and FAR storage, have been widely applied among skyscraper constructions in New York City for profit maximization goals. Since 1916, air rights regulations in New York zoning system have been revised and improved over the years to cater the urban development needs of different periods, and they also result in typical skyscraper block typologies. This research firstly performed spatial overlay analysis to reveal the spatial correlation between skyscraper blocks and air rights application blocks; secondly, Spacematrix parameters and cluster analysis are applied to divide the skyscraper urban block of New York City into four categories. Compared with air rights application data, the research attempts to illustrate how various air rights techniques have acted on the formation and evolution of skyscraper block typologies in the pre-1916, 1916-1961, 1961-2010, and 2010-present periods respectively, in order to reveal the relationship between public policies and urban morphology in a broader sense and also provide references for policy making in future.

Research On The Relevance Between Mixed-use Complex and User Behaviour Based On Three-dimensional Spatial Analysis

  • Zhendong Wang;Yihan Pan;Yi Lu;Xihui Zhou
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.1
    • /
    • pp.83-91
    • /
    • 2023
  • Under the dual pressure of population growth and land shortage, threedimensional development is the inevitable choice for cities in China. In such a scenario, a mixed-use complex has considerable potential in its realization and research. Based on space syntax and the three-dimensional visibility graph analysis, this paper describes the spatial and functional layout of the Shanghai Super Brand Mall and studies the relationship between spatial visibility and user behaviour through linear regression analysis and correlation analysis. This paper studies three different types of user behaviour, namely, path selection, staying selection, and store selection, and finds that spatial visibility and accessibility have different effects on user behaviour depending on the type and purpose of the activity. This paper reveals the influence of spatial and functional layout on user behaviour and puts forward the corresponding design strategy under the three-dimensional environment.

Inflow Conditions for Modelling the Neutral Equilibrium ABL Based on Standard k-ε Model

  • Jinghan Wang;Chao Li;Yiqing Xiao;Jinping ou
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.331-346
    • /
    • 2022
  • Reproducing the horizontally homogeneous atmospheric boundary layer in computational wind engineering is essential for predicting the wind loads on structures. One of the important issues is to use fully developed inflow conditions, which will lead to the consistence problem between inflow condition and internal roughness. Thus, by analyzing the previous results of computational fluid dynamic modeling turbulent horizontally homogeneous atmospheric boundary layer, we modify the past hypotheses, detailly derive a new type of inflow condition for standard k-ε turbulence model. A group of remedial approaches including formulation for wall shear stress and fixing the values of turbulent kinetic energy and turbulent dissipation rate in first wall adjacent layer cells, are also derived to realize the consistence of inflow condition and internal roughness. By combing the approaches with four different sets of inflow conditions, the well-maintained atmospheric boundary layer flow verifies the feasibility and capability of the proposed inflow conditions and remedial approaches.