• Title/Summary/Keyword: high resolution satellite image

Search Result 624, Processing Time 0.027 seconds

The study of Combination Texture Information and Knowledge Base Classification for Urban Paddy Area Extraction-Using High Resolution Satellite Image

  • Chou, Tien-Yin;Lei, Tsu-Chiang;Chen, Yan-Hung
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.807-810
    • /
    • 2003
  • This research uses high-resolution satellite images as a source of collecting farmland information. For effectively extract the paddy area, we use texture information and different classify methods to assist the satellite image classification. First, using maximum likelihood classifier to extract paddy information from images. The results show that User Accuracy and Procedure Accuracy of the paddy area can increase from 80.60% to 95.45% and 84.38% to 95.45%. Second, establishing a paddy Knowledge Base and using Knowledge Base Classifier to extract paddy area, and result shows the User Accuracy and Producer Accuracy to be 92.16% and 90.06%. Finally, The result shows we can effectively contribute to the paddy field information extraction from high-resolution satellite images.

  • PDF

Detection of The Pine Trees Damaged by Pine Wilt Disease using High Resolution Satellite and Airborne Optical Imagery

  • Lee, Seung-Ho;Cho, Hyun-Kook;Lee, Woo-Kyun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.5
    • /
    • pp.409-420
    • /
    • 2007
  • Since 1988, pine wilt disease has spread over rapidly in Korea. It is not easy to detect the damaged pine trees by pine wilt disease from conventional remote sensing skills. Thus, many possibilities were investigated to detect the damaged pines using various kinds of remote sensing data including high spatial resolution satellite image of 2000/2003 IKONOS and 2005 QuickBird, aerial photos, and digital airborne data, too. Time series of B&W aerial photos at the scale of 1:6,000 were used to validate the results. A local maximum filtering was adapted to determine whether the damaged pines could be detected or not at the tree level from high resolution satellite images, and to locate the damaged trees. Several enhancement methods such as NDVI and image transformations were examined to find out the optimal detection method. Considering the mean crown radius of pine trees, local maximum filter with 3 pixels in radius was adapted to detect the damaged trees on IKONOS image. CIR images of 50 cm resolution were taken by PKNU-3(REDLAKE MS4000) sensor. The simulated CIR images with resolutions of 1 m, 2 m, and 4 m were generated to test the possibility of tree detection both in a stereo and a single mode. In conclusion, in order to detect the pine tree damaged by pine wilt disease at a tree level from satellite image, a spatial resolution might be less than 1 m in a single mode and/or 1 m in a stereo mode.

Using High Resolution Satellite Imagery for New Address System (도로명 및 건물번호 부여사업에서 고해상도 위성영상의 활용)

  • Bae, Sun-Hak;Kim, Chang-Hwan;Shin, Young-Chul
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.6 no.4
    • /
    • pp.109-121
    • /
    • 2003
  • The point of this research is the use of the high resolution satellite image for local government's new address system, as well as spatially field investigation support and base map error finding. Most local governments use scale 1/1,000 and 1/5,000 digital map for base map and field investigation. But field investigator's knowledge insufficiency and the lack of base map's currency make things too difficult from the beginning of the project. As the way of solving this problem, this research offers the use of the high resolution satellite image in new address system with cadence data of digital base map. Until now satellite image is not suitable for our situation because it has low resolution. But this problem was solved for 1m space resolution satellite image and it is being applied wider and wider. Now vector data and Raster data are integrated for complimenting of each weak point. In this study the use of the high resolution satellite image in new address system is expected to improve the quality of the results and reduce the expenses. In addition the satellite image can use local government's fundamental data.

  • PDF

Ground Receiving System for KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Choi, Hae-Jin;Park, Sung-Og;Lee, Dong-Han;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.3
    • /
    • pp.191-200
    • /
    • 2003
  • Remote sensing division of satellite technology research center (SaTReC) , Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. The developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies for the ground receiving system for high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development from Dec. 1998 until Aug. 2002, the system had been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialized system for KOMPSAT-1. Currently the system is under customization for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

The study of environmental monitoring by science airship and high accuracy digital multi-spectral camera

  • Choi, Chul-Uong;Kim, Young-Seop;Nam, Kwang-Woo
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.750-750
    • /
    • 2002
  • The Airship PKNU is a roughly 12 m (32 ft) long blimp, filled with helium, whose two-gasoline power(3hp per engine) are independently radio controlled. The motors and propellers can be tilted and are attached to the gondola through an axle and supporting braces. Four stabilizing fins are mounted at the tail of the airship. To fill in the helium, a valve is placed at the bottom of the hull. The inaugural flight was on jul. 31.2002 at the Pusan, S.korea Most environment monitoring system\ problem use satellite image. But, Low resolution satellite image (multi-spectral) : 1km ∼ 250 m ground resolutions is lows. So, detail information acquisition is hard at the complex terrain. High resolution satellite image (black and white) 30m : The ground resolution is high. But it is high price, visit cycle and delivery time is long So. We want make high accuracy airship photogrammetry system. This airship can catch picture Multi. spectral Aerial photographing (visible, Near infrared and thermal infrared), and High resolution (over 6million pixel). It can take atmosphere datum (Temperature (wet bulb, dew point, general), Pressure (static, dynamic), Humidity, wind speed). this airship is very Quickness that aircraft install time is lower than 30 minutes, it is compact and that conveyance is easy. High-capacity save image (628 cut per 1time (over 6million and 4band(R,G,B,NIR)) and this airship can save datum this High accuracy navigatin (position and rotate angle) by DGPS tech. and Gyro system. this airship will do monitor about red-tide, sea surface temperate, and CH-A, SS and etc.

  • PDF

Analysis of Accumulation/Erosion in River Using Satellite Image (인공위성영상을 이용한 하천의 퇴적/침식 분석)

  • Yang In-Tae;Kim Dong-Moon;Chun Ki-Sun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.24 no.1
    • /
    • pp.37-45
    • /
    • 2006
  • Damage of rivers construction is serious to natural disaster by concentration rainfall in summer. Specially, increase of soil erosion breeds flood calamity of river bed accumulation and pondage decline etc., and erosion increase in upper stream shows in rivers flood of earth and sand, farm land and form of urban district burying. Flood damage investigation through on-the-spot probe until present need effective and scientific modelling techniques because is not efficient. This research wished to examine practical use of monitoring data of high resolution satellite image through satellite image analysis of various space resolution. Research analyzed abstraction possibility of soil disaster information using high resolution satellite image. Also, studied soil disaster damage present condition interpretation practical use possibility through various resolution satellite image analysis, and studied practical use of KOMPSAT image for interpretation of river topography change analysis.

Enhancement of Spatial Resolution to Local Area for High Resolution Satellite Imagery (고해상도 위성영상을 위한 국소영역 공간해상도 향상 기법)

  • Kang, Ji-Yun;Kim, Ihn-Cheol;Kim, Jea-Hee;Park, Jong Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.137-143
    • /
    • 2013
  • The high resolution satellite images are used in many fields such as weather observation, remote sensing, military facilities monitoring, cultural properties protection etc. Although satellite images are obtained in same satellite imaging system, the satellite images are degraded depending on the condition of hardware(optical device, satellite operation altitude, image sensor, etc.). Due to the fact that changing the hardware of satellite imaging system is impossible for resolution enhancement of these degraded satellite after launching a satellite, therefore the method of resolution enhancement with satellite images is necessary. In this paper the resolution is enhances by using a Super Resolution(SR) algorithm. The SR algorithm is an algorithm to enhance the resolution of an image by uniting many low resolution images, so an output image has higher resolution than using other interpolation methods. But It is difficult to obtain many images of the same area. Therefore, to solve this problem, we applied SR after by applying the affine and projection transform. As a results, we found that the images applied SR after affine and projection transform have higher resolution than the images only applied SR.

INITIAL GEOMETRIC ACCURACY OF KOMPSAT-2 HIGH RESOLUTION IMAGE

  • Seo, Doo-Chun;Lim, Hyo-Suk;Shin, Ji-Hyeon;Kim, Moon-Gyu
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.780-783
    • /
    • 2006
  • The KOrea Multi-Purpose Satellite-2 (KOMPSAT-2) was launched in July 2006 and the main mission of the KOMPSAT-2 is a high resolution imaging for the cartography of Korea peninsula by utilizing Multi Spectral Camera (MSC) images. The camera resolutions are 1 m in panchromatic scene and 4 m in multi-spectral imaging. This paper provides an initial geometric accuracy assessment of the KOMPSAT-2 high resolution image without ground control points and briefly introduces the sensor model of KOMPSAT-2. Also investigated and evaluated the obtained 3-dimensional terrain information using the MSC pass image and scene images acquired from the KOMPSAT-2 satellite.

  • PDF

Implementation of an Enhanced Change Detection System based on OGC Grid Coverage Specification

  • Lim, Young-Jae;Kim, Hong-Gab;Kim, Kyung-Ok
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1099-1101
    • /
    • 2003
  • Change detection technology, which discovers the change information on the surface of the earth by comparing and analyzing multi-temporal satellite images, can be usefully applied to the various fields, such as environmental inspection, urban planning, forest policy, updating of geographical information and the military usage. In this paper, we introduce a change detection system that can extract and analyze change elements from high-resolution satellite imagery as well as low- or middle-resolution satellite imagery. The developed system provides not only 7 pixelbased methods that can be used to detect change from low- or middle-resolution satellite images but also a float window concept that can be used in manual change detection from highresolution satellite images. This system enables fast access to the very large image, because it is constituted by OGC grid coverage components. Also new change detection algorithms can be easily added into this system if once they are made into grid coverage components.

  • PDF

GROUND RECEIVING SYSTEM FOR KOMPSAT-2

  • Kim, Moon-Gyu;Kim, Tae-Jung;Park, Sung-Og;Im, Yong-Jo;Shin, Ji-Hyun;Choi, Myung-Jin;Park, Seung-Ran;Lee, Jong-Ju
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.804-809
    • /
    • 2002
  • Remote sensing division of satellite technology research center (SaTReC), Korea advanced institute of science and technology (KAIST) has developed a ground receiving and processing system for high resolution satellite images. Developed system will be adapted and operated to receive, process and distributes images acquired from of the second Korean Multi-purpose Satellite (KOMPSAT-2), which will be launched in 2004. This project had initiated to develop and Koreanize the state-of-the-art technologies related to the ground receiving system fur high resolution remote sensing images, which range from direct ingestion of image data to the distribution of products through precise image correction. During four years development, the system has been verified in various ways including real operation of custom-made systems such as a prototype system for SPOT and a commercialised system for KOMPSAT-1. Currently the system is under customisation for installation at KOMPSAT-2 ground station. In this paper, we present accomplished work and future work.

  • PDF