• Title/Summary/Keyword: high resolution image

Search Result 2,212, Processing Time 0.022 seconds

Automatic Registration of High Resolution Satellite Images using Local Properties of Control Points (지역적 CPs 특성에 기반한 고해상도영상의 자동기하보정)

  • Han, You-Kyung;Byun, Young-Gi;Han, Dong-Yeob;Kim, Yong-Il
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2010.04a
    • /
    • pp.221-224
    • /
    • 2010
  • When the image registration methods which were generally used to the low medium resolution satellite images is applied to the high spatial resolution images, some matching errors or limitations might be occurred because of the local distortions in the images. This paper, therefore, proposed the automatic image-to-image registration of high resolution satellite images using local properties of control points to improve the registration result.

  • PDF

Image Restoration and Segmentation for PAN-sharpened High Multispectral Imagery (PAN-SHARPENED 고해상도 다중 분광 자료의 영상 복원과 분할)

  • Lee, Sanghoon
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.6_1
    • /
    • pp.1003-1017
    • /
    • 2017
  • Multispectral image data of high spatial resolution is required to obtain correct information on the ground surface. The multispectral image data has lower resolution compared to panchromatic data. PAN-sharpening fusion technique produces the multispectral data with higher resolution of panchromatic image. Recently the object-based approach is more applied to the high spatial resolution data than the conventional pixel-based one. For the object-based image analysis, it is necessary to perform image segmentation that produces the objects of pixel group. Image segmentation can be effectively achieved by the process merging step-by-step two neighboring regions in RAG (Regional Adjacency Graph). In the satellite remote sensing, the operational environment of the satellite sensor causes image degradation during the image acquisition. This degradation increases variation of pixel values in same area, and results in deteriorating the accuracy of image segmentation. An iterative approach that reduces the difference of pixel values in two neighboring pixels of same area is employed to alleviate variation of pixel values in same area. The size of segmented regions is associated with the quality of image segmentation and is decided by a stopping rue in the merging process. In this study, the image restoration and segmentation was quantitatively evaluated using simulation data and was also applied to the three PAN-sharpened multispectral images of high resolution: Dubaisat-2 data of 1m panchromatic resolution from LA, USA and KOMPSAT3 data of 0.7m panchromatic resolution from Daejeon and Chungcheongnam-do in the Korean peninsula. The experimental results imply that the proposed method can improve analytical accuracy in the application of remote sensing high resolution PAN-sharpened multispectral imagery.

Automated Training from Landsat Image for Classification of SPOT-5 and QuickBird Images

  • Kim, Yong-Min;Kim, Yong-Il;Park, Wan-Yong;Eo, Yang-Dam
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.3
    • /
    • pp.317-324
    • /
    • 2010
  • In recent years, many automatic classification approaches have been employed. An automatic classification method can be effective, time-saving and can produce objective results due to the exclusion of operator intervention. This paper proposes a classification method based on automated training for high resolution multispectral images using ancillary data. Generally, it is problematic to automatically classify high resolution images using ancillary data, because of the scale difference between the high resolution image and the ancillary data. In order to overcome this problem, the proposed method utilizes the classification results of a Landsat image as a medium for automatic classification. For the classification of a Landsat image, a maximum likelihood classification is applied to the image, and the attributes of ancillary data are entered as the training data. In the case of a high resolution image, a K-means clustering algorithm, an unsupervised classification, was conducted and the result was compared to the classification results of the Landsat image. Subsequently, the training data of the high resolution image was automatically extracted using regular rules based on a RELATIONAL matrix that shows the relation between the two results. Finally, a high resolution image was classified and updated using the extracted training data. The proposed method was applied to QuickBird and SPOT-5 images of non-accessible areas. The result showed good performance in accuracy assessments. Therefore, we expect that the method can be effectively used to automatically construct thematic maps for non-accessible areas and update areas that do not have any attributes in geographic information system.

Image Cache Algorithm for Real-time Implementation of High-resolution Color Image Warping (고해상도 컬러 영상 워핑의 실시간 구현을 위한 영상 캐시 알고리즘)

  • Lee, You Jin;Ryoo, Jung Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.8
    • /
    • pp.643-649
    • /
    • 2016
  • This paper presents a new image cache algorithm for real-time implementation of high-resolution color image warping. The cache memory is divided into four cache memory modules for simultaneous readout of four input image pixels in consideration of the color filter array (CFA) pattern of an image sensor and CFA image warping. In addition, a pipeline structure from the cache memory to an interpolator is shown to guarantee the generation of an output image pixel at each system clock cycle. The proposed image cache algorithm is applied to an FPGA-based real-time color image warping, and experimental results are presented to show the validity of the proposed method.

Bomb Impact Point Location Acquisition by Image Transformation using High-Resolution Commercial Camera (고해상도 상용카메라를 사용하는 영상변환을 이용한 탄착점 좌표획득)

  • Park, Sang-Jae;Ha, Seok-Wun
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.6 no.1
    • /
    • pp.1-7
    • /
    • 2011
  • In the bomb impact test, to acquire the bomb impact point location the high-priced embedded equipments such as the Bomb Scoring System or the EOTS are needed. Recently, a high-resolution image processing could be possible since the resolution of the commercial camera is growing rapidly. In this paper we first propose an image transformation method for acquiring the real bomb impact image using a high-resolution commercial camera, and then present the process calculating the real bomb impact point location coordinate from the transformed image. Based on the experimental results we found the possibilities that the real bomb impact point information could be effectively earned just using the commercial camera.

Thermal Design and On-Orbit Thermal Analysis of 6U Nano-Satellite High Resolution Video and Image (HiREV) (6U급 초소형 위성 HiREV(High Resolution Video and Image)의 광학 카메라의 열 설계 및 궤도 열 해석)

  • Han-Seop Shin;Hae-Dong Kim
    • Journal of Space Technology and Applications
    • /
    • v.3 no.3
    • /
    • pp.257-279
    • /
    • 2023
  • Korea Aerospace Research Institute has developed 6U Nano-Satellite high resolution video and image (HiREV) for the purpose of developing core technology for deep space exploration. The 6U HiREV Nano-Satellite has a mission of high-resolution image and video for earth observation, and the thermal pointing error between the lens and the camera module can occur due to the high temperature in camera module on mission mode. The thermal pointing error has a large effect on the resolution, so thermal design should solve it because the HiREV optical camera is developed based on commercial products that are the industrial level. So, when it operates in space, the thermal design is needed, because it has the best performance at room temperature. In this paper, three passive thermal designs were performed for the camera mission payload, and the thermal design was proved to be effective by performing on-orbit thermal analysis.

Neighborhood Correlation Image Analysis for Change Detection Using Different Spatial Resolution Imagery

  • Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.5
    • /
    • pp.337-350
    • /
    • 2006
  • The characteristics of neighborhood correlation images for change detection were explored at different spatial resolution scales. Bi-temporal QuickBird datasets of Las Vegas, NV were used for the high spatial resolution image analysis, while bi-temporal Landsat $TM/ETM^{+}$ datasets of Suwon, South Korea were used for the mid spatial resolution analysis. The neighborhood correlation images consisting of three variables (correlation, slope, and intercept) were evaluated and compared between the two scales for change detection. The neighborhood correlation images created using the Landsat datasets resulted in somewhat different patterns from those using the QuickBird high spatial resolution imagery due to several reasons such as the impact of mixed pixels. Then, automated binary change detection was also performed using the single and multiple neighborhood correlation image variables for both spatial resolution image scales.

A Study on High Resolution Reconstruction Algorithms for improving Resolution (해상도 향상을 위한 고해상도 복원 알고리즘 연구)

  • Baek, Young-Hyun;Moon, Sung-Ryong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.17 no.1
    • /
    • pp.72-79
    • /
    • 2007
  • In this paper, It propose a new restoration algorithm of high resolution, which is reconstructed to high resolution image using low resolution image informations. The proposed algorithm is constructed based on super resolution theory, it is consisted of progressive steps of the integration and construction. It reduced a lot of data-processing capacity and noise with integration through sub-pixel movement and wavelet basis through a higher resolution. As a result, it is shown that the main information is maintained and the error rate is improved. Using expansion fuzzy wavelet B-spline interpolation in stage of construction, it is confirmed that we can achieve smoothing image and good resolution without blur and block.

A fast high-resolution vibration measurement method based on vision technology for structures

  • Son, Ki-Sung;Jeon, Hyeong-Seop;Chae, Gyung-Sun;Park, Jae-Seok;Kim, Se-Oh
    • Nuclear Engineering and Technology
    • /
    • v.53 no.1
    • /
    • pp.294-303
    • /
    • 2021
  • Various types of sensors are used at industrial sites to measure vibration. With the increase in the diversity of vibration measurement methods, vibration monitoring methods using camera equipment have recently been introduced. However, owing to the physical limitations of the hardware, the measurement resolution is lower than that of conventional sensors, and real-time processing is difficult because of extensive image processing. As a result, most such methods in practice only monitor status trends. To address these disadvantages, a high-resolution vibration measurement method using image analysis of the edge region of the structure has been reported. While this method exhibits higher resolution than the existing vibration measurement technique using a camera, it requires significant amount of computation. In this study, a method is proposed for rapidly processing considerable amount of image data acquired from vision equipment, and measuring the vibration of structures with high resolution. The method is then verified through experiments. It was shown that the proposed method can fast measure vibrations of structures remotely.

Quantized CNN-based Super-Resolution Method for Compressed Image Reconstruction (압축된 영상 복원을 위한 양자화된 CNN 기반 초해상화 기법)

  • Kim, Yongwoo;Lee, Jonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.71-76
    • /
    • 2020
  • In this paper, we propose a super-resolution method that reconstructs compressed low-resolution images into high-resolution images. We propose a CNN model with a small number of parameters, and even if quantization is applied to the proposed model, super-resolution can be implemented without deteriorating the image quality. To further improve the quality of the compressed low-resolution image, a new degradation model was proposed instead of the existing bicubic degradation model. The proposed degradation model is used only in the training process and can be applied by changing only the parameter values to the original CNN model. In the super-resolution image applying the proposed degradation model, visual artifacts caused by image compression were effectively removed. As a result, our proposed method generates higher PSNR values at compressed images and shows better visual quality, compared to conventional CNN-based SR methods.