• 제목/요약/키워드: high resolution image

검색결과 2,168건 처리시간 0.031초

하이브리드 업샘플링을 이용한 베이시안 초해상도 영상처리 (Super-Resolution Image Processing Algorithm Using Hybrid Up-sampling)

  • 박종현;강문기
    • 전기학회논문지
    • /
    • 제57권2호
    • /
    • pp.294-302
    • /
    • 2008
  • In this paper, we present a new image up-sampling method which registers low resolution images to the high resolution grid when Bayesian super-resolution image processing is performed. The proposed up-sampling method interpolates high-resolution pixels using high-frequency data lying in all the low resolution images, instead of up-sampling each low resolution image separately. The interpolation is based on B-spline non-uniform re-sampling, adjusted for the super-resolution image processing. The experimental results demonstrate the effects when different up-sampling methods generally used such as zero-padding or bilinear interpolation are applied to the super-resolution image reconstruction. Then, we show that the proposed hybird up-sampling method generates high-resolution images more accurately than conventional methods with quantitative and qualitative assess measures.

Reconstruction of High-Resolution Facial Image Based on A Recursive Error Back-Projection

  • Park, Joeng-Seon;Lee, Seong-Whan
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 봄 학술발표논문집 Vol.31 No.1 (B)
    • /
    • pp.715-717
    • /
    • 2004
  • This paper proposes a new reconstruction method of high-resolution facial image from a low-resolution facial image based on a recursive error back-projection of top-down machine learning. A face is represented by a linear combination of prototypes of shape and texture. With the shape and texture information about the pixels in a given low-resolution facial image, we can estimate optimal coefficients for a linear combination of prototypes of shape and those of texture by solving least square minimization. Then high-resolution facial image can be obtained by using the optimal coefficients for linear combination of the high-resolution prototypes, In addition to, a recursive error back-projection is applied to improve the accuracy of synthesized high-resolution facial image. The encouraging results of the proposed method show that our method can be used to improve the performance of the face recognition by applying our method to reconstruct high-resolution facial images from low-resolution one captured at a distance.

  • PDF

SUPER RESOLUTION RECONSTRUCTION FROM IMAGE SEQUENCE

  • Park Jae-Min;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.197-200
    • /
    • 2005
  • Super resolution image reconstruction method refers to image processing algorithms that produce a high resolution(HR) image from observed several low resolution(LR) images of the same scene. This method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, such as satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. In this paper we applied super resolution reconstruction method in spatial domain to video sequences. Test images are adjacently sampled images from continuous video sequences and overlapped for high rate. We constructed the observation model between the HR images and LR images applied by the Maximum A Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from low resolution images and compared the results with those from other known interpolation methods.

  • PDF

GCP(GROUND CONTROL POINT) FOR AUTOMATION OF THE HIGH RESOLUTION SATELLITE IMAGE REVISION

  • Jo, Myung-Hee;Jung, Yun-Jae
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.219-222
    • /
    • 2007
  • Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.

  • PDF

Super Resolution Image Reconstruction using the Maximum A-Posteriori Method

  • Kwon Hyuk-Jong;Kim Byung-Guk
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.115-118
    • /
    • 2004
  • Images with high resolution are desired and often required in many visual applications. When resolution can not be improved by replacing sensors, either because of cost or hardware physical limits, super resolution image reconstruction method is what can be resorted to. Super resolution image reconstruction method refers to image processing algorithms that produce high quality and high resolution images from a set of low quality and low resolution images. The method is proved to be useful in many practical cases where multiple frames of the same scene can be obtained, including satellite imaging, video surveillance, video enhancement and restoration, digital mosaicking, and medical imaging. The method can be either the frequency domain approach or the spatial domain approach. Much of the earlier works concentrated on the frequency domain formulation, but as more general degradation models were considered, later researches had been almost exclusively on spatial domain formulations. The method in spatial domains has three stages: i) motion estimate or image registration, ii) interpolation onto high resolution grid and iii) deblurring process. The super resolution grid construction in the second stage was discussed in this paper. We applied the Maximum A­Posteriori(MAP) reconstruction method that is one of the major methods in the super resolution grid construction. Based on this method, we reconstructed high resolution images from a set of low resolution images and compared the results with those from other known interpolation methods.

  • PDF

저해상도 동영상에서의 자동화된 입력영상 선별을 이용한 고해상도 영상 복원 방법 (A High-Resolution Image Reconstruction Method Utilizing Automatic Input Image Selection from Low-Resolution Video)

  • 김성득
    • 대한전자공학회논문지SP
    • /
    • 제43권2호
    • /
    • pp.12-18
    • /
    • 2006
  • 이 논문은 저해상도 동영상에서 자동화된 방식으로 한 장의 좋은 화질의 고해상도 영상을 얻는 방안을 제시한다. 여러 장의 저해상도 영상을 이용하여 고해상도 영상을 얻는 방법이 한 장의 저해상도 영상만을 이용하는 전통적인 보간 방법에 비해 좋은 결과를 보이기 위해서는 입력 영상들이 공통된 고해상도 격자에 잘 정합되어야 하므로, 정합오차를 충분히 고려하여 입력영상들을 주의 깊게 선택한다. 본 논문에서는 움직임 보상된 저해상도 영상들로부터 얻어진 통계적 특성을 활용하여 입력 영상 후보들의 입력 영상으로서의 적합성을 평가한다. 고해상도 영상획득모델로부터 움직임 보상오차의 최대값을 추정한다. 입력 영상 후보의 움직임 보상오차가 추정된 움직임 보상오차의 최대값보다 크면 입력 영상후보는 선정에서 제외된다. 선정된 적절한 유효 입력 영상 후보의 수와 움직임 보상오차의 통계치를 고려하여 최종 입력 영상들을 선별한다. 입력 영상 선별부에서 최종적으로 선별된 입력 영상들은 뒤따르는 고해상도 영상복원부로 입력된다. 제안된 방식은 사용자의 간섭없이 저해상도 동영상에서 효과적으로 입력 영상들을 선별하여 좋은 화질의 고해상도 영상을 얻는 응용에 사용될 것으로 기대된다.

Application of Image Super-Resolution to SDO/HMI magnetograms using Deep Learning

  • Rahman, Sumiaya;Moon, Yong-Jae;Park, Eunsu;Cho, Il-Hyun;Lim, Daye
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.70.4-70.4
    • /
    • 2019
  • Image super-resolution (SR) is a technique that enhances the resolution of a low resolution image. In this study, we use three SR models (RCAN, ProSRGAN and Bicubic) for enhancing solar SDO/HMI magnetograms using deep learning. Each model generates a high resolution HMI image from a low resolution HMI image (4 by 4 binning). The pixel resolution of HMI is about 0.504 arcsec. Deep learning networks try to find the hidden equation between low resolution image and high resolution image from given input and the corresponding output image. In this study, we trained three models with HMI images in 2014 and test them with HMI images in 2015. We find that the RCAN model achieves higher quality results than the other two methods in view of both visual aspects and metrics: 31.40 peak signal-to-noise ratio(PSNR), Correlation Coefficient (0.96), Root mean square error (RMSE) is 0.004. This result is also much better than the conventional bi-cubic interpolation. We apply this model to a full-resolution SDO/HMI image and compare the generated image with the corresponding Hinode NFI magnetogram. As a result, we get a very high correlation (0.92) between the generated SR magnetogram and the Hinode one.

  • PDF

Multi- Resolution MSS Image Fusion

  • Ghassemian, Hassan;Amidian, Asghar
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.648-650
    • /
    • 2003
  • Efficient multi-resolution image fusion aims to take advantage of the high spectral resolution of Landsat TM images and high spatial resolution of SPOT panchromatic images simultaneously. This paper presents a multi-resolution data fusion scheme, based on multirate image representation. Motivated by analytical results obtained from high-resolution multispectral image data analysis: the energy packing the spectral features are distributed in the lower frequency bands, and the spatial features, edges, are distributed in the higher frequency bands. This allows to spatially enhancing the multispectral images, by adding the high-resolution spatial features to them, by a multirate filtering procedure. The proposed method is compared with some conventional methods. Results show it preserves more spectral features with less spatial distortion.

  • PDF

Super-Resolution Iris Image Restoration using Single Image for Iris Recognition

  • Shin, Kwang-Yong;Kang, Byung-Jun;Park, Kang-Ryoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권2호
    • /
    • pp.117-137
    • /
    • 2010
  • Iris recognition is a biometric technique which uses unique iris patterns between the pupil and sclera. The advantage of iris recognition lies in high recognition accuracy; however, for good performance, it requires the diameter of the iris to be greater than 200 pixels in an input image. So, a conventional iris system uses a camera with a costly and bulky zoom lens. To overcome this problem, we propose a new method to restore a low resolution iris image into a high resolution image using a single image. This study has three novelties compared to previous works: (i) To obtain a high resolution iris image, we only use a single iris image. This can solve the problems of conventional restoration methods with multiple images, which need considerable processing time for image capturing and registration. (ii) By using bilinear interpolation and a constrained least squares (CLS) filter based on the degradation model, we obtain a high resolution iris image with high recognition performance at fast speed. (iii) We select the optimized parameters of the CLS filter and degradation model according to the zoom factor of the image in terms of recognition accuracy. Experimental results showed that the accuracy of iris recognition was enhanced using the proposed method.

High-Resolution Satellite Image Super-Resolution Using Image Degradation Model with MTF-Based Filters

  • Minkyung Chung;Minyoung Jung;Yongil Kim
    • 대한원격탐사학회지
    • /
    • 제39권4호
    • /
    • pp.395-407
    • /
    • 2023
  • Super-resolution (SR) has great significance in image processing because it enables downstream vision tasks with high spatial resolution. Recently, SR studies have adopted deep learning networks and achieved remarkable SR performance compared to conventional example-based methods. Deep-learning-based SR models generally require low-resolution (LR) images and the corresponding high-resolution (HR) images as training dataset. Due to the difficulties in obtaining real-world LR-HR datasets, most SR models have used only HR images and generated LR images with predefined degradation such as bicubic downsampling. However, SR models trained on simple image degradation do not reflect the properties of the images and often result in deteriorated SR qualities when applied to real-world images. In this study, we propose an image degradation model for HR satellite images based on the modulation transfer function (MTF) of an imaging sensor. Because the proposed method determines the image degradation based on the sensor properties, it is more suitable for training SR models on remote sensing images. Experimental results on HR satellite image datasets demonstrated the effectiveness of applying MTF-based filters to construct a more realistic LR-HR training dataset.