• Title/Summary/Keyword: high resolution aerial image

Search Result 167, Processing Time 0.023 seconds

Generation of Mosaic Image using Aerial Oblique Images (경사사진을 이용한 모자이크 영상 제작)

  • Seo, Sang Il;Park, Byung-Wook;Lee, Byoung Kil;Kim, Jong In
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.22 no.3
    • /
    • pp.145-154
    • /
    • 2014
  • The road network becomes more complex and extensive. Therefore, the inconveniences are caused in accordance with the time delay of the restoration of damaged roads, demands for excessive costs on information collection, and limitations on acquisition of damage information of the roads. Recently, road centric spatial information is gathered using mobile multi sensor system for road inventory. But expensive MMS(Mobile Mapping System) equipments require high maintenance costs from beginning and takes a lot of time in the data processing. So research is needed for continuous maintenance by collecting and displaying the damaged information on a digital map using low cost mobile camera system. In this research we aim to develop the techniques for mosaic with a regular ground sample distance using successive image from oblique camera on a vehicle. For doing this, mosaic image is generated by estimating the homography of high resolution oblique image, and the ground sample distance and appropriate overlap are analyzed using high resolution aerial oblique images which contain resolution target. Based on this we have proposed the appropriate overlap and exposure interval for mobile road inventory system.

Automatic Extraction Method of the Building using High-Resolution Satellite Image (고해상도 위성영상을 이용한 건물의 자동추출기법)

  • Lee, Jae-Kee;Choi, Seok-Keun;Jung, Sung-Hyuk
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.11 no.1 s.24
    • /
    • pp.29-37
    • /
    • 2003
  • The High-resolution satellite images are able to get the latest information of wide range area and to shorten updating cycle of digital map better than the aerial images. Especially, as high-resolution satellite images are opened to public recently and able to be used commercially, the studies that make ortho-images using them and apply to the digital mapping and the database of geo-spatial information system are having been progressed actively. Therefore, the purposes of this study are to establish the auto-extraction methods and to develop algorithms for automatically extracting buildings which are distributed very much in urban areas and which updating cycle needs to shorten, out of man-made structures in the IKONOS ortho-image with 1m spatial resolution. The result of this study, we can extract automatically extract 72% out of the whole buildings. And we could know that the methods and algorithms proposed in this study are good relatively analyzing the error trend by means of the comparison with ortho-image, digital map and hawing result.

  • PDF

Update of Topographic Map using QuickBird Orthoimage (Quick Bird 정사영상을 이용한 지형도 갱신)

  • 이창경;우현권;정인준
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.11a
    • /
    • pp.295-301
    • /
    • 2004
  • Satellite captures images periodically and economically over the area wider than aerial photographs, and reconnaissance to unapproachable area. For these advantages, mapping using high resolution satellite image has high potentials of marketability and development. Therefore, utilization of satellite image in mapping and GIS is expected to be growing and research on describable feature, positional accuracy and, possible mapping scale is urgently needed. This research presented that Quick Bird orthoimage could be used to update digital map on a scale of 1:5,000. Quick Bird image was corrected geometrically based on ground control points. DEM was generated using height data of digital topographic map. The orthoimge was produced by digital differential rectification based on DEM which was generated using height data of digital topographic map(scale 1;5,000 and 1;1,000). When the digital topographic map was overlaid with the orthoimage, it was very easy to find changed region or new features builded after the map compiled.

  • PDF

The Optimal GSD and Image Size for Deep Learning Semantic Segmentation Training of Drone Images of Winter Vegetables (드론 영상으로부터 월동 작물 분류를 위한 의미론적 분할 딥러닝 모델 학습 최적 공간 해상도와 영상 크기 선정)

  • Chung, Dongki;Lee, Impyeong
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_1
    • /
    • pp.1573-1587
    • /
    • 2021
  • A Drone image is an ultra-high-resolution image that is several or tens of times higher in spatial resolution than a satellite or aerial image. Therefore, drone image-based remote sensing is different from traditional remote sensing in terms of the level of object to be extracted from the image and the amount of data to be processed. In addition, the optimal scale and size of data used for model training is different depending on the characteristics of the applied deep learning model. However, moststudies do not consider the size of the object to be found in the image, the spatial resolution of the image that reflects the scale, and in many cases, the data specification used in the model is applied as it is before. In this study, the effect ofspatial resolution and image size of drone image on the accuracy and training time of the semantic segmentation deep learning model of six wintering vegetables was quantitatively analyzed through experiments. As a result of the experiment, it was found that the average accuracy of dividing six wintering vegetablesincreases asthe spatial resolution increases, but the increase rate and convergence section are different for each crop, and there is a big difference in accuracy and time depending on the size of the image at the same resolution. In particular, it wasfound that the optimal resolution and image size were different from each crop. The research results can be utilized as data for getting the efficiency of drone images acquisition and production of training data when developing a winter vegetable segmentation model using drone images.

A Method to Improve Matching Success Rate between KOMPSAT-3A Imagery and Aerial Ortho-Images (KOMPSAT-3A 영상과 항공정사영상의 영상정합 성공률 향상 방법)

  • Shin, Jung-Il;Yoon, Wan-Sang;Park, Hyeong-Jun;Oh, Kwan-Young;Kim, Tae-Jung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.6_1
    • /
    • pp.893-903
    • /
    • 2018
  • The necessity of automatic precise georeferencing is increasing with the increase applications of high-resolution satellite imagery. One of the methods for collecting ground control points (GCPs) for precise georeferencing is to use chip images obtained by extracting a subset of an image map such as an ortho-aerial image, and can be automated using an image matching technique. In this case, the importance of the image matching success rate is increased due to the limitation of the number of the chip images for the known reference points such as the unified control point. This study aims to propose a method to improve the success rate of image matching between KOMPSAT-3A images and GCP chip images from aerial ortho-images. We performed the image matching with 7 cases of band pair using KOMPSAT-3A panchromatic (PAN), multispectral (MS), pansharpened (PS) imagery and GCP chip images, then compared matching success rates. As a result, about 10-30% of success rate is increased to about 40-50% when using PS imagery by using PAN and MS imagery. Therefore, using PS imagery for image matching of KOMPSAT-3A images and aerial ortho-images would be helpful to improve the matching success rate.

Refinement of Disparity Map using the Rule-based Fusion of Area and Feature-based Matching Results

  • Um, Gi-Mun;Ahn, Chung-Hyun;Kim, Kyung-Ok;Lee, Kwae-Hi
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.304-309
    • /
    • 1999
  • In this paper, we presents a new disparity map refinement algorithm using statistical characteristics of disparity map and edge information. The proposed algorithm generate a refined disparity map using disparity maps which are obtained from area and feature-based Stereo Matching by selecting a disparity value of edge point based on the statistics of both disparity maps. Experimental results on aerial stereo image show the better results than conventional fusion algorithms in the disparity error. This algorithm can be applied to the reconstruction of building image from the high resolution remote sensing data.

  • PDF

A Study on the Detection of Solar Power Plant for High-Resolution Aerial Imagery Using YOLO v2 (YOLO v2를 이용한 고해상도 항공영상에서의 태양광발전소 탐지 방법 연구)

  • Kim, Hayoung;Na, Ra;Joo, Donghyuk;Choi, Gyuhoon;Oh, Yun-Gyeong
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.2
    • /
    • pp.87-96
    • /
    • 2022
  • As part of strengthening energy security and responding to climate change, the government has promoted various renewable energy measures to increase the development of renewable energy facilities. As a result, small-scale solar installations in rural areas have increased rapidly. The number of complaints from local residents is increasing. Therefore, in this study, deep learning technology is applied to high-resolution aerial images on the internet to detect solar power plants installed in rural areas to determine whether or not solar power plants are installed. Specifically, I examined the solar facility detector generated by training the YOLO(You Only Look Once) v2 object detector and looked at its usability. As a result, about 800 pieces of training data showed a high object detection rate of 93%. By constructing such an object detection model, it is expected that it can be utilized for land use monitoring in rural areas, and it can be utilized as a spatial data construction plan for rural areas using technology for detecting small-scale agricultural facilities.

Applicability of Image Classification Using Deep Learning in Small Area : Case of Agricultural Lands Using UAV Image (딥러닝을 이용한 소규모 지역의 영상분류 적용성 분석 : UAV 영상을 이용한 농경지를 대상으로)

  • Choi, Seok-Keun;Lee, Soung-Ki;Kang, Yeon-Bin;Seong, Seon-Kyeong;Choi, Do-Yeon;Kim, Gwang-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.1
    • /
    • pp.23-33
    • /
    • 2020
  • Recently, high-resolution images can be easily acquired using UAV (Unmanned Aerial Vehicle), so that it is possible to produce small area observation and spatial information at low cost. In particular, research on the generation of cover maps in crop production areas is being actively conducted for monitoring the agricultural environment. As a result of comparing classification performance by applying RF(Random Forest), SVM(Support Vector Machine) and CNN(Convolutional Neural Network), deep learning classification method has many advantages in image classification. In particular, land cover classification using satellite images has the advantage of accuracy and time of classification using satellite image data set and pre-trained parameters. However, UAV images have different characteristics such as satellite images and spatial resolution, which makes it difficult to apply them. In order to solve this problem, we conducted a study on the application of deep learning algorithms that can be used for analyzing agricultural lands where UAV data sets and small-scale composite cover exist in Korea. In this study, we applied DeepLab V3 +, FC-DenseNet (Fully Convolutional DenseNets) and FRRN-B (Full-Resolution Residual Networks), the semantic image classification of the state-of-art algorithm, to UAV data set. As a result, DeepLab V3 + and FC-DenseNet have an overall accuracy of 97% and a Kappa coefficient of 0.92, which is higher than the conventional classification. The applicability of the cover classification using UAV images of small areas is shown.

A Study on the Edge Detection for Road Information based on the IKONOS (IKONOS 영상에서 도로정보추출을 위한 경계검출에 관한 연구)

  • Choi, Hyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.3
    • /
    • pp.593-598
    • /
    • 2006
  • High-resolution satellite imagery has many benefits, compared to aerial photo in the wide area as well as multi-spectral character. So, it can be used well for constructing GIS data when making digital map. This study analysed the possibilities that road information derived automatically from IKONOS can be used for making ITS system or updating digital map of the urban areas where change frequently and producing satellite image map. In this study, Sobel was applied for road edge dectection after low pass filtering. As the results, it's possible for low pass filtering and high pass filtering to be used as the basic data for ITS construction when extracting edge roads and constructs according to the characteristic of high-resolution satellite imagery.

A Study of Evaluation of the Feature from Cooccurrence Matrix and Appropriate Applicable Resolution

  • Seo, Byoung-Jun;Kwon, Oh-Hyoung;Kim, Yong-Il
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.8-12
    • /
    • 1999
  • Since the advent of high resolution satellite image, possibilities of applying various human interpretation mechanism to these images have increased. Also many studies about these possibilities in many fields such as computer vision, pattern recognition, artificial intellegence and remote sensing have been done. In this field of these studies, texture is defined as a kind of quantity related to spatial distribution of brightness and tone and also plays an important role for interpretation of images. Especially, methods of obtaining texture by statistical model have been studied intensively. Among these methods, texture measurement method based on cooccurrence matrix is highly estimated because it is easy to calculate texture features compared with other methods. In addition, these results in high classification accuracy when this is applied to satellite images and aerial photos. But in the existing studies using cooccurrence matrix, features have been chosen arbitrarily without considering feature variation. And not enough studies have been implemented for appropriate resolution selection in which cooccurrence matrix can extract texture. Therefore, this study reviews the concept of cooccurrence matrix as a texture measurement method, evaluates usefulness of several features obtained from cooccurrence matrix, and proposes appropriate resolution by investigating variance trend of several features.

  • PDF