• Title/Summary/Keyword: high resolution DEM

Search Result 180, Processing Time 0.026 seconds

GEOMETRIC COREGISTRATION FOR TERRASAR-X INTERFEROMETRY

  • Yoon, Geun-Won;Kim, Sang-Wan;Lee, Yong-Woong;Won, loong-Sun
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.251-254
    • /
    • 2008
  • The German radar satellite TerraSAR was launched in 2007. In this study, interferogram is generated using TerraSAR-X data and DEM (Digital Elevation Model). Coregistration procedures used with SAR images (i.e. master and slave) in traditional method results in serious errors for high resolution TerraSARX data because of the mutual shift of the master and slave images due to topography. This error becomes more serious in mountainous areas in which the coherence between interferometric pairs is relatively low. Here we processed a geometric coregistration with DEM exploiting height information. Through the method, interferometry processing is fulfilled to generate a qualified interferogram and coherence is improved. This approach will help high resolution X-band SAR interferometry in mountainous area.

  • PDF

the fusion of LiDAR Data and high resolution Image for the Precise Monitoring in Urban Areas (도심의 정밀 모니터링을 위한 LiDAR 자료와 고해상영상의 융합)

  • 강준묵;강영미;이형석
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2004.04a
    • /
    • pp.383-388
    • /
    • 2004
  • The fusion of a different kind sensor is fusion of the obtained data by the respective independent technology. This is a important technology for the construction of 3D spatial information. particularly, information is variously realized by the fusion of LiDAR and mobile scanning system and digital map, fusion of LiDAR data and high resolution, LiDAR etc. This study is to generate union DEM and digital ortho image by the fusion of LiDAR data and high resolution image and monitor precisely topology, building, trees etc in urban areas using the union DEM and digital ortho image. using only the LiDAR data has some problems because it needs manual linearization and subjective reconstruction.

  • PDF

Decision of GIS Optimum Grid on Applying Distributed Rainfall-Runoff Model with Radar Resolution (레이더 자료의 해상도를 고려한 분포형 강우-유출 모형의 GIS 자료 최적 격자의 결정)

  • Kim, Yon-Soo;Chang, Kwon-Hee;Kim, Byung-Sik;Kim, Hung-Soo
    • Journal of Wetlands Research
    • /
    • v.13 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • Changes in climate have largely increased concentrated heavy rainfall, which in turn is causing enormous damages to humans and properties. Therefore, the exact relationship and the spatial variability analysis of hydrometeorological elements and characteristic factors is critical elements to reduce the uncertainty in rainfall -runoff model. In this study, radar rainfall grid resolution and grid resolution depending on the topographic factor in rainfall - runoff models were how to respond. In this study, semi-distribution of rainfall-runoff model using the model ModClark of Inje, Gangwon Naerin watershed was used as Gwangdeok RADAR data. The completed ModClark model was calibrated for use DEM of cell size of 30m, 150m, 250m, 350m was chosen for the application, and runoff simulated by the RADAR rainfall data of 500m, 1km, 2km, 5km, 10km from 14 to 17 on July, 2006. According to the resolution of each grid, in order to compare simulation results, the runoff hydrograph has been made and the runoff has also been simulated. As a result, it was highly runoff simulation if the cell size is DEM 30m~150m, RADAR rainfall 500m~2km for peak flow and runoff volume. In the statistical analysis results, if every DEM cell size are 500m and if RADAR rainfall cell size is 30m, relevance of model was higher. Result of sensitivity assessment, high index DEM give effect to result of distributed model. Recently, rainfall -runoff analysis is used lumped model to distributed model. So, this study is expected to make use of the efficiently decision criteria for configurated models.

DEM Generation by Interval Matching Method of High Resolution Imagery (고해상도 위성영상의 인터벌 정합방법에 의한 DEM 제작)

  • Lee, Hyo-Seong;Park, Byung-Uk;Ahn, Ki-Weon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.247-248
    • /
    • 2008
  • 본 연구는 IKONOS 입체 위성영상에서 정합시간 단축을 위한 인터벌 정합방법을 제안하였다. 그 결과, 산림지역을 제외한 나머지 지역에서 인터벌을 주지 않고 정합한 경우와 큰 차이를 보이지 않았다.

  • PDF

Study on Production of DEM Using Aerial Photo (항공사진을 이용한 DEM 제작에 관한 연구)

  • Park, Chung-Sun;Lee, Gwang-Ryul
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.105-120
    • /
    • 2018
  • This study estimates possibility and limitation on production of DEM using aerial photo by comparison of DEMs using aerial photo and digital map. Mountain and urban areas show higher elevation in DEM using aerial photo than in DEM using digital map, due to height of vegetation cover and buildings, respectively. However, artificial affects due to bridge, embankment and road construction are responsible for areas with higher elevation in DEM using digital map than in DEM using aerial photo. This difference in elevation between DEMs seems to be caused by rapid change in real elevation that is not reflected in digital map. There is little difference in elevation between DEMs in plain and area with little or no vegetation cover. This study suggests that problems associated with vegetation cover and error by GCP should be fixed, although DEM using aerial photo can quantitatively and 3-dimensionally reconstruct topography with a high resolution.

Analysis on the Sand Beach Change at Jinbok-ri, Uljin Province of East Coast in Korea based on the High Resolution DEM by Terrestrial LiDAR (지상라이다의 고해상도 DEM을 이용한 울진 진복리 사빈 변화 분석)

  • Yoon, Soon-Ock;Jeon, Chung-Kyun;Hwang, Sangill
    • Journal of the Korean Geographical Society
    • /
    • v.48 no.3
    • /
    • pp.321-335
    • /
    • 2013
  • High resolution data for the coastal sand beach during short-term in Jinbok-ri, Uljin-gun, Gyeongsangbuk-do are obtained by terrestrial LiDAR. The micro-geomorphological changes of 8 times before and after the strong low-pressure events during June to September, 2009 and changes under the various environments of wave-energy are investigated in the study. The obvious geomorphological changes between the northern and southern sand beach in Jinbok-ri are revealed by terrestrial LiDAR as well as by grain size analysis. The strong waves by the typhoons decrease the area and volume of the beach, and especially the area is largely influenced. The erosive and depositional processes dominate the northern and southern sand beach, respectively, after high wave in September. These results suggest that lots of sand grains in the beach are largely re-transported within the beach rather than offshore.

  • PDF

Optimization of PRISM Parameters and Digital Elevation Model Resolution for Estimating the Spatial Distribution of Precipitation in South Korea (남한 강수량 분포 추정을 위한 PRISM 매개변수 및 수치표고모형 최적화)

  • Park, Jong-Chul;Jung, Il-Won;Chang, Hee-Jun;Kim, Man-Kyu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.15 no.3
    • /
    • pp.36-51
    • /
    • 2012
  • The demand for a climatological dataset with a regular spaced grid is increasing in diverse fields such as ecological and hydrological modeling as well as regional climate impact studies. PRISM(Precipitation-Elevation Regressions on Independent Slopes Model) is a useful method to estimate high-altitude precipitation. However, it is not well discussed over the optimization of PRISM parameters and DEM(Digital Elevation Model) resolution in South Korea. This study developed the PRISM and then optimized parameters of the model and DEM resolution for producing a gridded annual average precipitation data of South Korea with 1km spatial resolution during the period 2000-2005. SCE-UA (Shuffled Complex Evolution-University of Arizona) method employed for the optimization. In addition, sensitivity analysis investigates the change in the model output with respect to the parameter and the DEM spatial resolution variations. The study result shows that maximum radius within which station search will be conducted is 67km. Minimum radius within which all stations are included is 31km. Minimum number of stations required for cell precipitation and elevation regression calculation is four. Optimizing DEM resolution is $1{\times}1km$. This study also shows that the PRISM output very sensitive to DEM spatial resolution variations. This study contributes to improving the accuracy of PRISM technique as it applies to South Korea.

A Study on High-Precision DEM Generation Using ERS-Envisat SAR Cross-Interferometry (ERS-Envisat SAR Cross-Interferomety를 이용한 고정밀 DEM 생성에 관한 연구)

  • Lee, Won-Jin;Jung, Hyung-Sup;Lu, Zhong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.4
    • /
    • pp.431-439
    • /
    • 2010
  • Cross-interferometic synthetic aperture radar (CInSAR) technique from ERS-2 and Envisat images is capable of generating submeter-accuracy digital elevation model (DEM). However, it is very difficult to produce high-quality CInSAR-derived DEM due to the difference in the azimuth and range pixel size between ERS-2 and Envisat images as well as the small height ambiguity of CInSAR interferogram. In this study, we have proposed an efficient method to overcome the problems, produced a high-quality DEM over northern Alaska, and compared the CInSAR-derived DEM with the national elevation dataset (NED) DEM from U.S. Geological Survey. In the proposed method, azimuth common band filtering is applied in the radar raw data processing to mitigate the mis-registation due to the difference in the azimuth and range pixel size, and differential SAR interferogram (DInSAR) is used for reducing the unwrapping error occurred by the high fringe rate of CInSAR interferogram. Using the CInSAR DEM, we have identified and corrected man-made artifacts in the NED DEM. The wave number analysis further confirms that the CInSAR DEM has valid Signal in the high frequency of more than 0.08 radians/m (about 40m) while the NED DEM does not. Our results indicate that the CInSAR DEM is superior to the NED DEM in terms of both height precision and ground resolution.

QuickBird - Geometric Correction, Data Fusion, and Automatic DEM Extraction

  • Cheng, Philip;Toutin, Thierry;Zhang, Yun
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.216-218
    • /
    • 2003
  • QuickBird satellite is quickly becoming the best choice for high-resolution mapping using satellite images. In this paper, we will describe the followings: (1) how to correct QuickBird data using different geometric correction methods, (2) data fusion using QuickBird panchromatic and multispectral data, and (3) automatic DEM extraction using QuickBird stereo data.

  • PDF

Implementation of theVerification and Analysis System for the High-Resolution Stereo Camera (고해상도 다기능 스테레오 카메라 지상 검증 및 분석 시스템 구현)

  • Shin, Sang-Youn;Ko, Hyoungho
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.471-482
    • /
    • 2019
  • The mission of the high-resolution camera for the lunar exploration is to provide 3D topographic information. It enables us to find the appropriate landing site or to control accurate landing by the short distance stereo image in real-time. In this paper, the ground verification and analysis system using the multi-application stereo camera to develop the high-resolution camera for the lunar exploration are proposed. The mission test items and test plans for the mission requirement are provided and the test results are analyzed by the ground verification and analysis system. For the realistic simulation for the lunar orbiter, the target area that has similar characteristics with the real lunar surface is chosen and the aircraft flight is planned to take image of the area. The DEM is extracted from the stereo image and compose three dimensional results. The high-resolution camera mission requirements for the lunar exploration are verified and the ground data analysis system is developed.