• 제목/요약/키워드: high resistance

검색결과 9,498건 처리시간 0.033초

Effect of Resistance Exercise Intensity on the Strength and Lymphedema of Upper Extremity in Patients with Breast Cancer

  • So, Hyun-Jeong;Shin, Won-Seob
    • The Journal of Korean Physical Therapy
    • /
    • 제27권5호
    • /
    • pp.339-344
    • /
    • 2015
  • Purpose: The purpose of this study was to determine the effects of high and low resistance exercise using an elastic band on the strength and lymphedema of upper extremity in patients with breast cancer. Methods: Seventeen female patients with breast cancer related lymphedema were randomly allocated to the high (n=9) or low (n=8) resistance exercise group. Both groups participated in the elastic band exercise program three times a week for eight weeks. For the high resistance exercise group (HR), the resistance was gradually increased, while maintaining constant intensity of exercise for the low resistance exercise group (LR). Assessments made include the upper extremity muscle strength and lymphedema before and after training. Results: After the exercise program, the HR showed significantly improved shoulder flexion and elbow flexion strength variation compared to the LR (p<0.05). Upper arm edema rate was significantly decreased in HR (p<0.05), but the difference between the two groups was not significant. Conclusion: These findings suggest that the elastic band exercise helps improve the strength and lymphedema of upper extremity in patients with breast cancer. In particular, high resistance exercise is more effective in improving muscle strength and does not exacerbate lymphedema, rather may improve upper arm edema if it is applied with a low elastic bandage or compression sleeve.

고성능 콘크리트의 폭렬방지 공법 현장적용 사례 (Field Application of Spalling Prevention Method of High Performance Concrete)

  • 김경민;허영선;이재삼;지석원;이성연;한천구
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2005년도 추계 학술논문 발표대회
    • /
    • pp.7-10
    • /
    • 2005
  • This paper is about manufacture of spalling resistance concrete and also investigates the spalling mechanism and spalling resistance method with diverse materials, mixture proportion and lateral confinement. The present work with the basic experiment achieved successful method for spatting resistance using both proper amounts of fiber contents and lateral confinement using metal lath. Moreover, the developed spatting resistance method was applied for full sized column construction in the Doosan We've Poseidon I field, located in Busan city. The author investigated the physical properties examining workability, placeability and pumpability. These studies are continuously processing to develop new technology expecting remarkable impact on the spatting resistance and fire resistance performance of high-raise building construction in the future.

  • PDF

Analytical model for flexural and shear strength of normal and high-strength concrete beams

  • Campione, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • 제78권2호
    • /
    • pp.199-207
    • /
    • 2021
  • In the present paper, an analytical model is proposed to determine the flexural and shear strength of normal and high-strength reinforced concrete beams with longitudinal bars, in the presence of transverse stirrups. The model is based on evaluation of the resistance contribution due to beam and arch actions including interaction with stirrups. For the resistance contribution of the main bars in tension the residual bond adherence of steel bars, including the effect of stirrups and the crack spacing of R.C. beams, is considered. The compressive strength of the compressed arch is also verified by taking into account the biaxial state of stresses. The model was verified on the basis of experimental data available in the literature and it is able to include the following variables in the resistance provision: - geometrical percentage of steel bars; - depth-to-shear span ratio; - resistance of materials; - crack spacing; - tensile stress in main bars; - residual bond resistance including the presence of stirrups;- size effects. Finally, some of the more recent analytical expressions able to predict shear and flexural resistance of concrete beams are mentioned and a comparison is made with experimental data.

Construction of sports engineering structures with high resistance to improve the quality of sports training

  • Lin He;Qiyuan Deng
    • Structural Engineering and Mechanics
    • /
    • 제86권2호
    • /
    • pp.211-220
    • /
    • 2023
  • The textile industry has benefited from nanotechnology in various fields of application as the use of nanomaterials, and nanotechnology is multiplying. Nanoparticles can increase the performance of textiles by up to 100 times when used in finishing, coating, and dyeing techniques, providing them with capabilities they did not previously possess. Nanotechnology is used in the textile chemical industry to produce sports mats with stain resistance, flame resistance, wrinkle resistance, moisture management, antimicrobial quality, and UV protection. The incorporation of nanomaterials into fabrics can have a significant effect on their properties, including shrinkage, strength, electrical conductivity, and flammability. Various inventions and innovations may result from nano-processed textiles in the future, thus leading to the advancement of science. This article presents the construction of sports engineering structures with high resistance to improve the quality of sports training. The mechanical properties of sports mats are improved with the help of nanotechnology. Strength, elasticity, and tear resistance are among these properties. This method enables the production of elastic, durable, and tear-resistant sports mats.

CFRP로 보강된 철근콘크리트 휨부재의 내화성능 개선을 위한 실험 (Experiment for the Improvement of Fire Resistance Capacity of Reinforced Concrete Flexural Member Strengthened with Carbon Fiber Reinforced Polymer)

  • 임종욱;서수연;송세기
    • 대한건축학회논문집:구조계
    • /
    • 제33권12호
    • /
    • pp.19-27
    • /
    • 2017
  • This paper is a study to improve the fire-resistance capacity of reinforced concrete (RC) members strengthened by fiber-reinforced-polymer (FRP). The fire resistance of the RC members strengthened by FRP was evaluated through high temperature exposure test. In order to improve the fire resistance of the FRP reinforcing method, a fire-proof board was attached to the reinforced FRP surface and then the high temperature exposure test was carried out to evaluate the improvement of the fire resistance performance. It was confirmed that the resistance to high temperature of NSMR could be improved somewhat compared with that of EBR from the experiment that exposed to high temperature under the load corresponding to 40% of nominal strength. When 30 mm thick fire-resistance (FR) board is attached to the FRP surface, the surface of the reinforced FRP does not reach $65^{\circ}C$, which is the glass transition temperature (GTT) of the epoxy until the external temperature reaches $480^{\circ}C$. In particular, when a high performance fire-proof mortar was first applied prior to FR board attachment, the FRP portion did not reach the epoxy glass transition temperature until the external temperature reached $600^{\circ}C$.

송전계통 고저항 지락사고 보호기술 현황 및 개발전망 (Present State and Development Prospect on the Protective Relaying Under High Resistance Earth Faults in Transmission Systems)

  • 이종범;김일동
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1995년도 하계학술대회 논문집 B
    • /
    • pp.640-642
    • /
    • 1995
  • This paper describes the present state and development prospect on the protective relaying under high resistance earth faults in transmission systems. Especially it is difficult to detect the fault accompanied with high resistance contary to low resistance. In the complicated power system if the detection is failed, power failure will be occured in large area. New technology with respect to such a problem must be developed. This paper introduces research and development trend in home and abroad.

  • PDF

수복재료에 대합되는 의치용 레진치의 마모저항성 비교 (COMPARISON OF WEAR RESISTANCE AMONG RESIN DENTURE TEETH OPPOSING VAR10US RESTORATIVE MATERIALS)

  • 이철영;정문규
    • 대한치과보철학회지
    • /
    • 제37권3호
    • /
    • pp.313-327
    • /
    • 1999
  • The aim of this study was to compare wear resistance of resin denture teeth opposing various restorative materials. The wear resistance of conventional acrylic resin teeth(Trubyte Biotone) and three high-strength resin teeth(Bioform IPN, Endura, SR-Orthosit-PE) opposing different restorative materials(gold alloys, dental porcelain, composite resin) was compared. Wear tests were conducted with a sliding-induced wear testing apparatus which applied 100,000 strokes to the specimen in a mesio-distal direction under conditions of 100 stroke/min and constant loading of 1Kgf/tooth. Wear resistance of the resin denture teeth was evaluated by the following criteria : 1) wear depth, 2) weight loss, and 3) SEM observation. Results were as follows. 1. When opposed to gold alloys and composite resin, high-strength resin teeth showed superior wear resistance compared to acrylic resin teeth. But, in cases opposing dental porcelain, differences between the wear of the high-strength and acrylic resin teeth were not statistically significant (p<0.05). 2. When comparing wear resistance among high-strength resin teeth, opposing gold alloys, Endura was slightly more resistant and while in cases opposing dental porcelain, SR-Orthosit-PE was showed to be slightly resistant(p<0.05). 3. The wear of high-strength resin teeth was greater by 5 to 7 times when opposing porcelain and 2 to 3 times when opposing composite resin compared to gold alloys(p<0.05). 4. SEM observations of the wear surface showed that wear of resin teeth opposing gold alloys is a fatigue type of wear and wear of resin teeth opposing dental porcelain is fatigue and abrasion type of wear. Trubyte Biotone showed more severe fatigue type of wear than high-strength resin teeth. In conclusion, the use of dental porcelain should seriously be considered as restorative material in cases opposing resin denture teeth and improvement seems to be needed on resin teeth in the areas of wear resistance.

  • PDF

Human Chorionic Gonadotropin (hCG) Regression Curve for Predicting Response to EMA/CO (Etoposide, Methotrexate, Actinomycin D, Cyclophosphamide and Vincristine) Regimen in Gestational Trophoblastic Neoplasia

  • Rattanaburi, Athithan;Boonyapipat, Sathana;Supasinth, Yuthasak
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권12호
    • /
    • pp.5037-5041
    • /
    • 2015
  • Background: An hCG regression curve has been used to predict the natural history and response to chemotherapy in gestational trophoblastic disease. We constructed hCG regression curves in high-risk gestational trophoblastic neoplasia (GTN) treated with EMA/CO and identified an optimal hCG level to detect EMA/CO resistance in GTN. Materials and Methods: Eighty-one women with GTN treated with EMA/CO were classified as primary high-risk GTN (n = 65) and single agent-resistance GTN (n = 16). The hCG levels prior to each course of chemotherapy were plotted in the 10th, 50th, and 90th percentiles to construct the hCG regression curves. Diagnostic performance was evaluated for an optimal cut-off value. Results: The median hCG levels were 264,482 mIU/mL mIU/mL and 495.5 mIU/mL mIU/mL for primary high-risk GTN and single agent-resistance GTN, respectively. The 50th percentile of the hCG level in primary high-risk GTN and single agent-resistance turned to normal before the 4th and the 2nd course of chemotherapy, respectively. The 90th percentile of the hCG level in primary high-risk GTN and single agent-resistance turned to normal before the 9th and the 2nd course of chemotherapy, respectively. The hCG level of ${\geq}118.6mIU/mL$ mIU/mL at the 5thcourse of EMA/CO predicted the EMA/CO resistance in primary high-risk GTN patients with a sensitivity of 85.7% and a specificity of 100%. Conclusion: EMA/CO resistance in primary high-risk GTN can be predicted by using an hCG regression curve in combination with the cut-off value of 118.6 mIU/mL at the 5thcourse of chemotherapy.

20대의 혈류제한 저항운동이 위팔두갈래근 활성도, 피로도 및 혈역학적 변인에 미치는 영향 (Effect of Blood Flow Restriction Resistance Exercise in Twenties on Biceps Activity, Fatigue and Hemodynamic Variables )

  • 정대근;강정일;박준수
    • 대한물리의학회지
    • /
    • 제18권1호
    • /
    • pp.15-24
    • /
    • 2023
  • PURPOSE: This study examined the effects of lowintensity resistance exercise combined with blood flow restriction on muscle activity and muscle fatigue to determine if such a combination may be an alternative to high-intensity resistance exercise in maintaining the muscle mass and strength and preventing degenerative loss of skeletal muscle and to provide basic data for presenting the effectiveness of exercise. METHODS: The interventions were provided for five weeks, four sessions a week, once a day, 60 minutes a session to Experimental group I (n = 13), in which low-intensity resistance exercise was applied by combining blood flow restriction with the biceps curl and experimental group II (n = 12), in which only high-intensity resistance exercise was applied. As a pre-test, the biceps brachii muscle activity and fatigue were measured by surface electromyography, and the hemodynamic variables, such as blood pressure and heart rate, were measured. The post-test was performed identically to the pre-test and compared and analyzed with the pre-test. RESULTS: A significant difference within-group was observed in the biceps brachii muscle activity and fatigue in experimental group I and only in biceps brachii activity in experimental group II. No significant differences were observed between the two groups. CONCLUSION: Since the low-intensity resistance exercise combined with blood flow restriction has similar effects to high-intensity resistance exercise, it is considered an alternative for improving muscle function in groups unable to perform high-intensity resistance exercise.

고주파열처리 SM53C강의 기계적 성질에 관한 연구 (A Study on Mechanical Property of SM53C Steel by High Frequency Induction Hardening)

  • 김황수;김정현
    • 한국기계가공학회지
    • /
    • 제9권6호
    • /
    • pp.7-15
    • /
    • 2010
  • Recently, with the high performance and efficiency of machine, there have been required the multi-functions in various machine parts, such as the heat resistance, the abrasion resistance and the stress resistance as well as the strength. Fatigue crack growth tests were carried out to investigate the fatigue characteristics of high carbon steel (SM53C) experienced by high-frequency induction treatment. The Cam nose part of the Automobile's Cam shaft is strongly bumped with rocker arm or valve-lift. Therefore abnormal wear such as unfair wear and early wear occur in the surface. This abnormal wear causes a defect that bad timing open and close actions of the engine valve happen in the combustion chamber so the fuel gas will be combustion imperfect. Therefore, the cam shaft demands high hardness and wear resistance. In this study, high frequency heat treatment has been accomplished while wear test for material SM53C.