• Title/Summary/Keyword: high pressure reactor vessel

Search Result 86, Processing Time 0.025 seconds

Integral effect test for steam line break with coupling reactor coolant system and containment using ATLAS-CUBE facility

  • Bae, Byoung-Uhn;Lee, Jae Bong;Park, Yu-Sun;Kim, Jongrok;Kang, Kyoung-Ho
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2477-2487
    • /
    • 2021
  • To improve safety analysis technology for a nuclear reactor containment considering an interaction between a reactor coolant system (RCS) and containment, this study aims at an experimental investigation on the integrated simulation of the RCS and containment, with an integral effect test facility, ATLAS-CUBE. For a realistic simulation of a pressure and temperature (P/T) transient, the containment simulation vessel was designed to preserve a volumetric scale equivalently to the RCS volume scale of ATLAS. Three test cases for a steam line break (SLB) transient were conducted with variation of the initial condition of the passive heat sink or the steam flow direction. The test results indicated a stratified behavior of the steam-gas mixture in the containment following a high-temperature steam injection in prior to the spray injection. The test case with a reduced heat transfer on the passive heat sink showed a faster increase of the P/T inside the containment. The effect of the steam flow direction was also investigated with respect to a multi-dimensional distribution of the local heat transfer on the passive heat sink. The integral effect test data obtained in this study will contribute to validating the evaluation methodology for mass and energy (M/E) and P/T transient of the containment.

CFD Analysis of a Concept of Nuclear Hybrid Heat Pipe with Control Rod (원자로 제어봉과 결합된 하이브리드 히트파이프의 CFD 해석)

  • Jeong, Yeong Shin;Kim, Kyung Mo;Kim, In Guk;Bang, In Cheol
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.109-114
    • /
    • 2014
  • After the Fukushima accident in 2011, it was revealed that nuclear power plant has the vulnerability to SBO accident and its extension situation without sufficient cooling of reactor core resulting core meltdown and radioactive material release even after reactor shutdown. Many safety systems had been developed like PAFS, hybrid SIT, and relocation of RPV and IRWST as a part of steps for the Fukushima accident, however, their applications have limitation in the situation that supply of feedwater into reactor is impossible due to high pressure inside reactor pressure vessel. The concept of hybrid heat pipe with control rod is introduced for breaking through the limitation. Hybrid heat pipe with control rod is the passive decay heat removal system in core, which has the abilities of reactor shutdown as control rod as well as decay heat removal as heat pipe. For evaluating the cooling performance hybrid heat pipe, a commercial CFD code, ANSYS-CFX was used. First, for validating CFD results, numerical results and experimental results with same geometry and fluid conditions were compared to a tube type heat pipe resulting in a resonable agreement between them. After that, wall temperature and thermal resistances of 2 design concepts of hybrid heat pipe were analyzed about various heat inputs. For unit length, hybrid heat pipe with a tube type of $B_4C$ pellet has a decreasing tendency of thermal resistance, on the other hand, hybrid heat pipe with an annular type $B_4C$ pellet has an increasing tendency as heat input increases.

A SMALL MODULAR REACTOR DESIGN FOR MULTIPLE ENERGY APPLICATIONS: HTR50S

  • Yan, X.;Tachibana, Y.;Ohashi, H.;Sato, H.;Tazawa, Y.;Kunitomi, K.
    • Nuclear Engineering and Technology
    • /
    • v.45 no.3
    • /
    • pp.401-414
    • /
    • 2013
  • HTR50S is a small modular reactor system based on HTGR. It is designed for a triad of applications to be implemented in successive stages. In the first stage, a base plant for heat and power is constructed of the fuel proven in JAEA's $950^{\circ}C$, 30MWt test reactor HTTR and a conventional steam turbine to minimize development risk. While the outlet temperature is lowered to $750^{\circ}C$ for the steam turbine, thermal power is raised to 50MWt by enabling 40% greater power density in 20% taller core than the HTTR. However the fuel temperature limit and reactor pressure vessel diameter are kept. In second stage, a new fuel that is currently under development at JAEA will allow the core outlet temperature to be raised to $900^{\circ}C$ for the purpose of demonstrating more efficient gas turbine power generation and high temperature heat supply. The third stage adds a demonstration of nuclear-heated hydrogen production by a thermochemical process. A licensing approach to coupling high temperature industrial process to nuclear reactor will be developed. The low initial risk and the high longer-term potential for performance expansion attract development of the HTR50S as a multipurpose industrial or distributed energy source.

Prediction of Heat Transfer Rates to Spray Water Droplets in a High Pressure Mixture Composed of Saturated Steam and Noncondensable Hydrogen Gas (고압의 포화수증기-비응축성 수소기체 혼합기 속에서 분무수적으로의 열전달을 예측)

  • Lee, S.K.;Jo, J.C.;Cho, J.H.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.3 no.5
    • /
    • pp.337-349
    • /
    • 1991
  • Heat and mass transfer rates to spray water droplets for spray transients in a high pressure vessel have been predicted by two different droplet models: the complete mixing model and the non-mixing model. In this process, the ambient fluid surrounding the droplets is a real-gas mixture composed of saturated steam and noncondensable hydrogen gas at high pressure. The physical properties of the mixture are estimated by applying the concept of compressibility factor and using appropriate correlations. A computer program, DROPHMT, to calculate the heat and mass transfer rates for two different droplet models has been developed. As an illustrative application of the computer program to engineering practices, heat and mass transfer rates to spray water droplets for spray transients in a Pressurized Water Reactor (PWR) pressurizer have been calculated, and the typical results have been provided.

  • PDF

A Study on the Integrity Evaluation Method of Subclad Crack Under Pressurized Thermal Shock (가압열충격 사고시 클래드 하부균열 안전성 평가 방법에 관한 연구)

  • Kim, Yeong-Jin;Kim, Jin-Su;Gu, Bon-Geol;Choe, Jae-Bung;Park, Yun-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.7
    • /
    • pp.1139-1146
    • /
    • 2001
  • The reactor pressure vessel(RPV) is usually cladded with stainless steel to prevent corrosion and radiation embrittlement, and a number of subclad cracks have been found during an in-service-inspection. These subclad cracks should be assured for a safe operation under normal conditions and faulted conditions such as pressurized thermal shock(PTS). Currently available integrity assessment procedure for an RPV, ASME Code Sec. XI, are built on the basis of linear fracture mechanics (LEFM). In PTS condition, however, thermal stress and mechanical stress give rise to high tensile stress at the cladding and elastic-plastic behavior is expected in this area. Therfore, ASME Code Sec. XI is overly conservative in assessing the structural integrity under PTS condition. In this paper, the fracture parameter (stress intensity factor, K, and RT(sub)NDT) from elastic analysis using ASME Sec. XI and finite element method were validated against 3-D elastic-plastic finite element analyses. The difference between elastic and elastic-plastic analysis became significant with increasing crack depth. Therfore, it is recommended to perform elastic-plastic analysis for the accurate assessment of subclad cracks under TPS which causes plastic deformation at the cladding.

Thermodynamic Calculation and Observation of Microstructural Change in Ni-Mo-Cr High Strength Low Alloy RPV Steels with Alloying Elements (압력용기용 Ni-Mo-Cr계 고강도 저합금강의 합금원소 함량 변화에 따른 미세조직학적 특성변화의 열역학 계산 및 평가)

  • Park, Sang Gyu;Kim, Min-Chul;Lee, Bong-Sang;Wee, Dang-Moon
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.12
    • /
    • pp.771-779
    • /
    • 2008
  • An effective way of increasing the strength and fracture toughness of reactor pressure vessel steels is to change the material specification from that of Mn-Mo-Ni low alloy steel(SA508 Gr.3) to Ni-Mo-Cr low alloy steel(SA508 Gr.4N). In this study, we evaluate the effects of alloying elements on the microstructural characteristics of Ni-Mo-Cr low alloy steel. The changes in the stable phase of the SA508 Gr.4N low alloy steel with alloying elements were evaluated by means of a thermodynamic calculation conducted with the software ThermoCalc. The changes were then compared with the observed microstructural results. The calculation of Ni-Mo-Cr low alloy steels confirms that the ferrite formation temperature decreases as the Ni content increases because of the austenite stabilization effect. Consequently, in the microscopic observation, the lath martensitic structure becomes finer as the Ni content increases. However, Ni does not affect the carbide phases such as $M_{23}C_6 $ and $M_7C_3$. When the Cr content decreases, the carbide phases become unstable and carbide coarsening can be observed. With an increase in the Mo content, the $M_2C$ phase becomes stable instead of the $M_7C_3$ phase. This behavior is also observed in TEM. From the calculation results and the observation results of the microstructure, the thermodynamic calculation can be used to predict the precipitation behavior.

An Experimental Study of Direct Containment Heating Phenomena (격납용기 직접가열 현상에 관한 실험적 연구)

  • Chanyoung Chung;Gyoodong Jeun;Bang, Kwang-Hyun;Kim, Moohwan
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.413-423
    • /
    • 1993
  • This paper reports an experimental study of direct containment heating (DCH) which would occur if the primary system pressure is still high at the time of vessel breach during a light water reactor core melt accident. The experiments were conducted in 1/30-scale cavity models of Kori unit 1 and 2 and Young Kwang unit 3 and 4 nuclear power plants. One 1/20-scale model of the Kori plant was also used to investigate the scaling effect. The primary variables in the experiments were initial vessel pressure, vessel breach size and cavity geometry. It is observed that higher initial pressure and larger breach size enhance the melt dispersal fraction. Also, the cavity geometry appears to affect the dispersal rate greatly. A simple correlation of melt dispersal fraction is proposed in terms of nondimensional effective period. This correlation shows good agreement with the present experimental data, the KAIST data and the BNL data.

  • PDF

Improved prediction model for H2/CO combustion risk using a calculated non-adiabatic flame temperature model

  • Kim, Yeon Soo;Jeon, Joongoo;Song, Chang Hyun;Kim, Sung Joong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.12
    • /
    • pp.2836-2846
    • /
    • 2020
  • During severe nuclear power plant (NPP) accidents, a H2/CO mixture can be generated in the reactor pressure vessel by core degradation and in the containment as well by molten corium-concrete interaction. In spite of its importance, a state-of-the-art methodology predicting H2/CO combustion risk relies predominantly on empirical correlations. It is therefore necessary to develop a proper methodology for flammability evaluation of H2/CO mixtures at ex-vessel phases characterized by three factors: CO concentration, high temperature, and diluents. The developed methodology adopted Le Chatelier's law and a calculated non-adiabatic flame temperature model. The methodology allows the consideration of the individual effect of the heat transfer characteristics of hydrogen and carbon monoxide on low flammability limit prediction. The accuracy of the developed model was verified using experimental data relevant to ex-vessel phase conditions. With the developed model, the prediction accuracy was improved substantially such that the maximum relative prediction error was approximately 25% while the existing methodology showed a 76% error. The developed methodology is expected to be applicable for flammability evaluation in chemical as well as NPP industries.

Steam Explosion Experiments using ZrO$_2$ (ZrO$_2$를 이용한 증기폭발 실험)

  • Song, Jin-Ho;Kim, Hui-Dong;Hong, Seong-Wan;Park, Ik-Gyu;Sin, Yong-Seung;Min, Byeong-Tae;Kim, Jong-Hwan;Jang, Yeong-Jo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.25 no.12
    • /
    • pp.1887-1897
    • /
    • 2001
  • Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named "Test for Real Corium Interaction with water (TROI)" using reactor material to investigate whether the molten reactor material would lead to energetic steam explosion when interacted wish cold water at low pressure. The melt-water interaction experiment is performed in a pressure vessel with the multi-dimensional fuel and water pool geometry. The novel concept of cold crucible technology, where powder of the reactor material in a water-cooled cafe is heated by high frequency induction, is firstly implemented for the generation of molten fuel. In this paper, the lest facility and cold crucible technology are introduced and the results or the first series of tests were discussed. The 5 kg of molten ZrO$_2$jet was poured into the 67cm deep water pool at 30 ∼ 95 $\^{C}$. Either spontaneous steam explosions or quenching was observed. The morphology of debris and pressure wave profiles clearly indicate the differences between the two cases.

The Study on a Real-time Flow-rate Calculation Method by the Measurement of Coolant Pump Power in an Integral Reactor (일체형원자로에서 냉각재펌프의 전력측정을 이용한 실시간 유량산정 방법에 관한 연구)

  • Lee, J.;Yoon, J.H.;Zee, S.Q.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2003.12a
    • /
    • pp.161-166
    • /
    • 2003
  • It is the common features of the integral reactors that the main components of the RCS are installed within the reactor vessel, and so there are no any flow pipes connecting the coolant pumps or steam generators. Due to no any flow pipes, it is impossible to measure the differential pressure at the RCS of the integral reactors, and it also makes impossible measure the flow-rate of the reactor coolant. As a alternative method, the method by the measurement of coolant pump power has been introduced in this study. Up to now, we did not found out a precedent which the coolant pump power is used for the real-time flow-rate calculation at normal operation of the commercial nuclear power plants. The objective of the study is to embody the real-time flow-rate calculation method by the measurement of coolant pump power in an integral reactor. As a result of the study, we could theoretically reason that the capacity-head curve and capacity-shaft power curve around the rated capacity with the high specific-speeded axial flow pumps have each diagonally steep incline but show the similar shape. Also, we could confirm the above theoretical reasoning from the measured result of the pump motor inputs, So, it has been concluded that it is possible to calculate the real-time flow-rate by the measurement of pump motor inputs. In addition, the compensation for a above new method can be made by HBM being now used in the commercial nuclear power plants.

  • PDF