• Title/Summary/Keyword: high pressure device

Search Result 572, Processing Time 0.026 seconds

Diagnosis of Work-related Musculoskeletal Disease through Moire Image Pattern and Treatment Measure using a Sling System (Moire' 영상무늬를 통한 근골격계질환의 진단과 현가장치를 이용한 치료방안)

  • Lee Sang-Yong;Lee Eun-Kyong;Kwon So-Hee;Jung He-Kyong;Kim Sam-Tae;Chong Myong-Soo;Lee Ki-Nam
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.7 no.2
    • /
    • pp.121-130
    • /
    • 2003
  • The Musculoskeletal Disease has been ignored or turned away due to the difficulty of diagnosis and the vagueness of judgement up to now. Contrary to other diseases, there were many cases where the character of the Musculoskeletal Disease wasn't revealed through the objective inspection. And that's because the Musculoskeletal Disease appears for the most part due to muscular defect so it is impossible to diagnose the muscle by X-ray diagnosing the bone and it is also impossible to diagnose the fine damage of the muscle or tendon even by advanced device like MRI. As the nervous blood vessels or acupunctures pass through or are next to the muscle, the tension of the muscle put pressure on these so can become the direct or indirect causes of various kinds of pains or intern diseases. But in spite of that, for lack of proper equipment diagnosing the state of the muscle(Shortened.. Relaxed... or Hardened...) the muscle has been disregarded or neglected intentionally or unintentionally. While many people think themselves to be a muscular expert, if they don't see the shape of the muscle, that is just like blind treatment. But as now the equipment diagnosing the state of the muscle is developed, it seems that this problem can be settled. It was attempted in this study that the muscle or skeleton of the Musculoskeletal disease patients was diagno the treatment order and method were decided by a questionnaire survey and simple inspection, and the Musculoskeletal correction exercise using the muscle management and sling system made them escape from the Musculoskeletal disease, turning their muscle into more flexible and stronger muscle. As a result notwithstanding the limited treatment period '12 times', the improvement rate was as high as 74%, which showed that the muscle management and Musculoskeletal correction exercise had a great effect on the symptom improvement of the patients. If the treatment times had increased, the improvement rate also would have increased more.

  • PDF

Characteristics of TMA Gas Detection of a ZnO Thin Films by Annealing (열처리에 따른 ZnO 박막의 TMA 가스 검지 특성)

  • Ryu, Jee-Youl;Park, Sung-Hyun;Choi, Hyek-Hwan;Kwon, Tae-Ha
    • Journal of Sensor Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.30-36
    • /
    • 1996
  • ZnO thin-film sensors were fabricated by RF magnetron sputtering method. The composition of the device material was 4 wt. % $Al_{2}O_{3}$, 1 wt. % $TiO_{2}$ and 0.2 wt. % $V_{2}O_{5}$ on the basis of ZnO material for developing the high sensitive TMA gas sensor which have an appropriate resistivity and the stability for practical use. They were also grown on the $SiO_{2}/Si$ substrates heated at $250^{\circ}C$ under a pure oxygen pressure of about 10 mTorr with a power of about 80 watts for 10 minutes. So as to enhance the stability of the resistivity, the thin films were annealed from $400^{\circ}C$ to $800^{\circ}C$. The sensors made with the thin film which were annealed at $700^{\circ}C$ for 60 minutes in pure oxygen gas exhibited a good sensing properties for TMA gas. The thin film grown at this condition showed the maximum sensitivity of 550 in TMA gas concentration of 160 ppm, and exhibited a good stability and excellent linearity.

  • PDF

A Study of Baby Sleeping Positions Sensing and Safety Band Using an Accelerometer (가속도 센서를 이용한 아기 수면자세 감지 및 안전 밴드에 관한 연구)

  • Yoon, Ji-Min;Lim, Chae-Young;Kim, Kyung-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.6
    • /
    • pp.11-18
    • /
    • 2010
  • In this paper, it introduced the device that was fabricated for monitoring sleeping positions of infants with 3-axis accelerometer. Sleep monitoring studies has been usually conducted two ways. To monitor sleeping posture by installing a camera and then recording of sleep in the sleeping room continuously is the first one. The other one is monitoring pressure sensor's results data for sleeping. Those two ways' benefits are that are able to get relatively accurate sleeping posture data but, there are many disadvantages like constraints of spaces and places, the installation of sensors or cameras, and high cost. In addition, it has a lot of problems that difficult to solve. For babies, it's not easy to apply, as well as uncomfortable. The proposed method uses a 3-axis accelerometer's X axis, Y axis, Z axis position output values in order to recognize the bad ground sleeping position that use of the buzzer alarm. This method uses a 3-axis acceleration sensor to measure the data and transmit sleeping posture using Bluetooth wireless in real time monitoring. The data is helpful for prevention safety hazard such as choked themselves when they slept back side on.

Comparative Experiments to Assess the Effects of Accumulator Nitrogen Injection on Passive Core Cooling During Small Break LOCA

  • Li, Yuquan;Hao, Botao;Zhong, Jia;Wang, Nan
    • Nuclear Engineering and Technology
    • /
    • v.49 no.1
    • /
    • pp.54-70
    • /
    • 2017
  • The accumulator is a passive safety injection device for emergency core cooling systems. As an important safety feature for providing a high-speed injection flow to the core by compressed nitrogen gas pressure during a loss-of-coolant accident (LOCA), the accumulator injects its precharged nitrogen into the system after its coolant has been emptied. Attention has been drawn to the possible negative effects caused by such a nitrogen injection in passive safety nuclear power plants. Although some experimental work on the nitrogen injection has been done, there have been no comparative tests in which the effects on the system responses and the core safety have been clearly assessed. In this study, a new thermal hydraulic integral test facility-the advanced core-cooling mechanism experiment (ACME)-was designed and constructed to support the CAP1400 safety review. The ACME test facility was used to study the nitrogen injection effects on the system responses to the small break loss-of-coolant accident LOCA (SBLOCA) transient. Two comparison test groups-a 2-inch cold leg break and a double-ended direct-vessel-injection (DEDVI) line break-were conducted. Each group consists of a nitrogen injection test and a nitrogen isolation comparison test with the same break conditions. To assess the nitrogen injection effects, the experimental data that are representative of the system responses and the core safety were compared and analyzed. The results of the comparison show that the effects of nitrogen injection on system responses and core safety are significantly different between the 2-inch and DEDVI breaks. The mechanisms of the different effects on the transient were also investigated. The amount of nitrogen injected, along with its heat absorption, was likewise evaluated in order to assess its effect on the system depressurization process. The results of the comparison and analyses in this study are important for recognizing and understanding the potential negative effects on the passive core cooling performance caused by nitrogen injection during the SBLOCA transient.

Dynamics and die design in continuous and patch slot coating processes (Continuous 와 pattern slot 코팅 공정에서의 유동특성과 다이 설계)

  • Kim Su-Yeon;Shim Seo-Hoon;Shin Dong-Myeong;Lee Joo-Sung;Jung Hyun-Wook;Hyun Jae-Chun
    • Proceedings of the Korean Society of Rheology Conference
    • /
    • 2006.06a
    • /
    • pp.81-84
    • /
    • 2006
  • Slot coating process, in continuous and patch modes, has been applied for the many precise coating products, e.g., flat panel displays and second batteries. However, manufacturing uniform coating products is not a trivial task at high-speed operations because various flow instabilities or defects such as leaking, bubbles, ribbing, and rivulets are frequently observed in this process. It is no wonder, therefore, that many efforts to understand the various aspects of dynamics and coating windows of this process have been made both in academia and industry. In this study, as the first topic, flow dynamics within the coating bead in slot coating process has been investigated using the one-dimensional viscocapillary model by lubrication approximation and two-dimensional model by Flow-3D software. Especially, operability windows in both 1D and 2D cases with various slot die lip designs have been successfully portrayed. Also, effects of process conditions like viscosity and coating gap size on slot coating window have been analyzed. Also, some experiments to find minimum coating thickness and coating windows have been conducted using slot die coater implemented with flow visualization device, corroborating the numerical results. As the second topic, flow dynamics of both Newtonian and Non-Newtonian fluids in patch or pattern slot coating process, which is employed in manufacturing IT products such as secondary batteries, has been investigated for the purpose of optimal process designs. As a matter of fact, the flow control in this system is more difficult than in continuous case because od its transient or time-dependent nature. The internal die and die lip designs for patterned uniform coating products have been obtained by controlling flow behaviors of coating liquids issuing from slot. Numerical simulations have been performed using Fluent and Flow-3D packages. Flow behavior and pressure distribution inside the slot die has been compared with various die internal shapes and geometries. In the coating bead region, efforts to reduce irregular coating defects in head and tail parts of one patterned coating unit have been tried by changing die lip shapes. It has been concluded that optimal die internal design gas been developed, guaranteeing uniform velocity distribution of both Newtonian and shear thinning fluids at the die exit. And also optimal die lip design has been established, providing the longer uniform coating layer thickness within one coating unit.

  • PDF

Effect of Critical Cooling Rate on the Formation of Intermetallic Phase During Rapid Solidification of FeNbHfBPC Alloy

  • Kim, Song-Yi;Oh, Hye-Ryeong;Lee, A-Young;Jang, Haneul;Lee, Seok-Jae;Kim, Hwi-Jun;Lee, Min-Ha
    • Journal of Korea Foundry Society
    • /
    • v.41 no.3
    • /
    • pp.235-240
    • /
    • 2021
  • We present the effect of the critical cooling rate during rapid solidification on the nucleation of precipitates in an Fe75B13P5Nb2Hf1C4 (at.%) alloy. The thermophysical properties of the rapidly solidified Fe75B13P5Nb2Hf1C4 liquids, which were obtained at various cooling rates with various sizes of gas-atomized powder during a high-pressure inert gas-atomization process, were evaluated. The cooling rate of the small-particle powder (≤20 ㎛) was 8.4×105 K/s, which was 13.5 times faster than that of the large-particle powder (20 to 45 mm; 6.2×104 K/s) under an atomized temperature. A thermodynamic calculation model used to predict the nucleation of the precipitates was confirmed by the microstructural observation of MC-type carbide in the Fe75B13P5Nb2Hf1C4 alloy. The primary carbide phase was only formed in the large-particle gas-atomized powder obtained during solidification at a slow cooling rate compared to that of the small-particle powder.

The 33-mode Dielectric and Piezoelectric Properties of PIN-PMN-PT Single Crystal under Stress and Electric Field (압축하중 및 전계 인가에 따른 PIN-PMN-PT 단결정의 33-모드 유전 및 압전특성)

  • Lim, Jae Gwang;Park, Jae Hwan;Lee, Jeongho;Lee, Sang Goo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.4
    • /
    • pp.91-96
    • /
    • 2020
  • The 33-mode dielectric and piezoelectric properties of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 piezoelectric single crystals were measured under large electric field and compressive stress. The phase transition from the low temperature rhombohedral to the high temperature tetragonal structure was observed in the range of 110~140℃, and the Curie temperature changing to the cubic structure was about 165℃. The polarization change according to the compressive stress and electric field was measured. Relative dielectric constant was calculated from the slope of the polarization curve applied to the electric field, and the calculated relative dielectric constant increased as the applied stress increased, and the relative dielectric constant decreased as the applied electric field increased. The strain according to the compressive stress and electric field change was measured, the piezoelectric constant was calculated from the slope of the curve, and the phase transition according to the application of pressure was confirmed. In the case of practical application as an underwater or medical ultrasonic actuator, it is necessary to properly design the magnitude of the compressive stress applied to the device and the DC bias in order to maintain linear driving.

The hydrodynamic characteristics of the canvas kite - 1. The characteristics of the rectangular, trapezoid canvas kite - (캔버스 카이트의 유체역학적 특성에 관한 연구 - 1. 사각형 캔버스 카이트의 특성 -)

  • Bae, Bong-Seong;Bae, Jae-Hyun;An, Heui-Chun;Lee, Ju-Hee;Shin, Jung-Wook
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.40 no.3
    • /
    • pp.196-205
    • /
    • 2004
  • As far as an opening device of fishing gears is concerned, applications of a kite are under development around the world. The typical examples are found in the opening device of the stow net on anchor and the buoyancy material of the trawl. While the stow net on anchor has proved its capability for the past 20 years, the trawl has not been wildly used since it has been first introduced for the commercial use only without sufficient studies and thus has revealed many drawbacks. Therefore, the fundamental hydrodynamics of the kite itself need to ne studied further. Models of plate and canvas kite were deployed in the circulating water tank for the mechanical test. For this situation lift and drag tests were performed considering a change in the shape of objects, which resulted in a different aspect ratio of rectangle and trapezoid. The results obtained from the above approaches are summarized as follows, where aspect ratio, attack angle, lift coefficient and maximum lift coefficient are denoted as A, B, $C_L$ and $C_{Lmax}$ respectively : 1. Given the rectangular plate, $C_{Lmax}$ was produced as 1.46${\sim}$1.54 with A${\leq}$1 and 40$^{\circ}$${\leq}$B${\leq}$42$^{\circ}$. And when A${\geq}$1.5 and 20$^{\circ}$${\leq}$B${\leq}$22$^{\circ}$, $C_{Lmax}$ was 10.7${\sim}$1.11. Given the rectangular canvas, $C_{Lmax}$ was 1.75${\sim}$1.91 with A${\leq}$1 and 32$^{\circ}$${\leq}$B${\leq}$40$^{\circ}$. And when A${\geq}$1.5 and 18$^{\circ}$${\leq}$B${\leq}$22$^{\circ}$, $C_{Lmax}$ was 1.24${\sim}$1.40. Given the trapezoid kite, $C_{Lmax}$ was produced as 1.65${\sim}$1.89 with A${\leq}$1.5 and 34$^{\circ}$${\leq}$B${\leq}$44$^{\circ}$. And when A=2 and B=14${\sim}$48, $C_L$ was around 1. Given the inverted trapezoid kite, $C_{Lmax}$ was 1.57${\sim}$1.74 with A${\leq}$1.5 and 24$^{\circ}$${\leq}$B${\leq}$36$^{\circ}$. And when A=2, $C_{Lmax}$ was 1.21 with B=18$^{\circ}$. 2. For a model with A=1/2, an increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Then there was a tendency of a gradual decrease in the value of $C_L$ and in particular, the rectangular kite showed a more rapid decrease. For a model with A=2/3, the tendency of $C_L$ was similar to the case of a model with A=1/2 but the tendency was a more rapid decrease than those of the previous models. For a model with A=1, and increase in B caused an increase in $C_L$ until $C_L$ has reached the maximum. Soon after the tendency of $C_L$ decreased dramatically. For a model with A=1.5, the tendency of $C_L$ as a function of B was various. For a model with A=2, the tendency of $C_L$ as a function of B was almost the same in the rectangular and trapezoid model. There was no considerable change in the models with 20$^{\circ}$${\leq}$B${\leq}$50$^{\circ}$. 3. The tendency of kite model's $C_L$ in accordance with increase of B was increased rapidly than plate models until $C_L$ has reached the maximum. Then $C_L$ in the kite model was decreased dramatically but in the plate model was decreased gradually. The value of $C_{Lmax}$ in the kite model was higher than that of the plate model, and the kite model's attack angel at $C_{Lmax}$ was smaller than the plate model's. 4. In the relationship between aspect ratio and lift force, the attack angle which had the maximum lift coefficient was large at the small aspect ratio models, At the large aspect ratio models, the attack angle was small. 5. There was camber vertex in the position in which the fluid pressure was generated, and the rectangular & trapezoid canvas had larger value of camber vertex when the aspect ratio was high, while the inverted trapezoid canvas was versa. 6. All canvas kite had larger camber ratio when the aspect ratio was high, and the rectangular & trapezoid canvas had larger one when the attack angle was high.

Tissue changes of pulp and periodontium on rapid tooth movement with osteotomy in dogs (골절단을 이용한 급속 치아이동 후 치수 및 치주조직 변화)

  • Kang, Kyung-Hwa;Kim, Eun-Cheol;Lee, Sun-Kyung;Lim, Chae-Woong;Matduda, Kiku;Tae, Ki-Chul;Kim, Sang-Cheol
    • The korean journal of orthodontics
    • /
    • v.34 no.2 s.103
    • /
    • pp.131-142
    • /
    • 2004
  • The movement of tooth-bone segments by osteotomy can simultaneously shift tooth and surrounding alveolar bone in a relatively short period. The purpose of this study was to evaluate the tissue changes in pulp, periodontal ligament, and alveolar bone in rapid tooth-bone movement with osteotomy. The mandibular 3rd premolar of a dog was extracted and cortical bones of the buccal and lingual area were eliminated, and then cortical bones around the mesial and distal area of root, and below the root apex of the mandibular 4th premolar were osteotomized. After a one-week latency period, a tooth-borne distraction device was activated for 6 days. And pulp, periodontal ligament and alveolar bone were evaluated clinically, radiologically, histologically and immunohistochemically at 0, 1, 2, 4, 6, 8 weeks of the consolidation Period and conclusions were roached as follows. 1. Latency period didn't affect total amount or tooth movement and healing process of tissue during consolidation period. 2. Bone formation continued through 8 weeks of consolidation in distracted side, with a high peak at 1-2 weeks, and the lowest at 6-8 weeks or consolidation. 3. At 1 week of consolidation, alveolar bone resorption, osteoclast appearance and inflammatory cell infiltration were the most active, and dentinoclasts characteristically appeared on the pulp and pressure side of the periodontal ligament. 4. The expression of $TGF-\beta$ was area-specific, as it was strong-positive at bone matrix, osteoblast osteoclast of alveolar bone, and dentinoclast inside pulp, but weak in pulp, cementoblast and acellular cementum. 5. The expression of $TGF-\beta$ was generally observed at the initial 1-2 weeks of consolidation at vessels, periodontal ligament cells, and osteoblast near alveolar bone on the distraction side of the periodontal ligament, and was significantly decreased after 6 weeks of consolidation.

Evaluation of the Potential of Nitrogen Plasma to Cosmetics (질소 플라즈마의 화장품 가능성 평가)

  • Lee, So Min;Jung, So Young;Brito, Sofia;Heo, Hyojin;Cha, Byungsun;Lei, Lei;Lee, Sang Hun;Lee, Mi-Gi;Bin, Bum-Ho;Kwak, Byeong-Mun
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.48 no.3
    • /
    • pp.189-196
    • /
    • 2022
  • Plasma refers to an ionized gas that is often referred to as "the fourth phase of matter", following solid, liquid, and gas. Plasma has traditionally been utilized for industrial applications such as welding and neon signs, but its promise in biomedical fields such as cancer treatment and dermatology has lately been recognized. Indeed, due to its beneficial effects in promoting collagen production, improving skin tone, and eliminating harmful bacteria in the skin, plasma treatment constitutes an important target for dermatological research. In this study, a plasma device for cosmetic manufacturing based on nitrogen, the main component of the atmosphere, was designed and assembled. Moreover, nitric oxide (NO) was selected since is easier to follow and evaluate than other nitrogen plasma active species, and its contents were measured to perform a quantitative and qualitative evaluation of plasma. First, an injection method, using different proximities labeled "sinking" and "non sinking" treatments, was performed to test the most efficient plasma treatment method. As a result, it was observed that the formulation obtained by a non sinking treatment was more effective. Furthermore, toner and ampoule were selected as cosmetics formulations, and the characteristics of the formulation and changes in the injected plasma state were observed. In both formulations, the successful injection of NO plasma was 2 times higher in toner formulation than ampoule formulation, and it gradually decreased with time, having dissipated after a week. It was confirmed that the nitrogen plasma used did not affect the stability of the toner and ampoule formulations at low temperature (4 ℃), room temperature (25 ℃), and high temperature (37 ℃ and 50 ℃) conditions. The results of this study demonstrate the potential of plasma cosmetics and highlight the importance of securing the stability of the injected plasma.