• 제목/요약/키워드: high pressure cylinder

검색결과 423건 처리시간 0.034초

수소-예혼합 압축착화 엔진에서 착화제인 DME/diesel이 엔진 연소에 미치는 영향 (Effects of DME/Diesel as an ignition promoter on combustion of hydrogen homogeneous charge compression ignition)

  • 전지연;박현욱;배충식
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2013년도 제46회 KOSCO SYMPOSIUM 초록집
    • /
    • pp.37-40
    • /
    • 2013
  • Hydrogen-dimethy ether (DME) and hydrogen-diesel compression ignition engine combustion were investigated and compared each other in a single cylinder compression ignition engine. Hydrogen and DME were used as low carbon alternative fuels to reduce green house gases and pollutant. Hydrogen was injected at the intake manifold with an injection pressure of 0.5 MPa at fixed injection timing, $-210^{\circ}CA$ aTDC. DME and diesel were injected directly into the cylinder through the common-rail injection system at injection pressure of 30 MPa. DME and diesel inejction timing was varied to find the optimum CI combustion to reduce CO, HC and NOx emissions. When DME was injected early, CO and HC emissions were high while NOx emission was low. Fuel consumption, heat release rate, and exhaust emissions were measured to analyze each combustion characteristics of each ignition promoter. Fuel consumption was decreased when diesel was used as an ignition promoter. This is due to the lower volatility of diesel which created more stratified charge than DME.

  • PDF

커먼레일식 디젤기관의 부분 예혼합 분사시기가 연소 및 배기특성에 미치는 영향 (The Effects of Partially Premixed Pilot Injection Timing on the Combustion and Emission Characteristics in a Common Rail Diesel Engine)

  • 윤삼기;최낙정
    • 동력기계공학회지
    • /
    • 제17권6호
    • /
    • pp.18-24
    • /
    • 2013
  • An experimental study was performed to investigate the characteristics of combustion pressure and exhaust emissions when the pilot injection timing and EGR rate were changed in a CRDI 4-cylinder diesel engine. The pilot injection timing and EGR rate have a significant impact on the combustion and emission characteristics of diesel engine. In this study, the pilot injection timing and EGR rate variation were conducted to 2000rpm of engine speed with torque 50Nm. Combustion pressure and heat release rate were decreased under high EGR rate conditions but increased under the pilot injection timing $20^{\circ}$(BTDC). IMEP and the maximum pressure in cylinder(Pmax) were decreased under the same injection timing with the increase of EGR rate. The NOx emission was decreased with increasing the EGR rate. On the other hand, in the same injection timing conditions, CO, HC, $CO_2$ emissions were increased with increasing the EGR rate.

DME/Diesel 듀얼 퓨얼 엔진의 연소 및 배출 특성에 관한 연구 (Research on the Combustion and Emission Characteristics of the DME/Diesel Dual-fuel Engine)

  • 임옥택;표영덕;이영재
    • 한국자동차공학회논문집
    • /
    • 제19권5호
    • /
    • pp.29-34
    • /
    • 2011
  • This study investigates the potential of DME/Diesel dual fuel engine for reducing emissions with same power. Dual fuel engine controls the combustion using two different fuels, DME and diesel with different auto-ignition timings. In the previous work, the caracteristics of combustion and emissions under single cylinder engine and ignition is done by compression ignition. Pre-mixture is formed by injecting low-pressure DME into an intake manifold and high-pressure fuel (diesel or DME) is injected directly into the cylinder. Both direct diesel injection and port fuel injection reduced the significant amount of Smoke, CO and NOx in the homogeneous charge compression ignition engine due to present of oxygen in DME. In addition, when injecting DME directly in cylinder with port DME injection, there is no changes in emissions and energy consumption rate even operated by homogeneous charge compression ignition.

유압 피스톤 펌프의 실린더 블록과 밸브 플레이트 사이의 유막 특성 (Fluid Film Characteristics between Cylinder Block and Valve Plates in Oil Hydraulic Piston Pumps)

  • 정재연;송규근;오석형;김종기
    • 유공압시스템학회논문집
    • /
    • 제1권2호
    • /
    • pp.8-14
    • /
    • 2004
  • Abstract: In the oil hydraulic piston pumps the clearance between the valve plate and cylinder block plays an important role for volumetric and overall efficiency. Thus, adequate lubricational fluid film is needed for the interface. In this study, fluid film thickness is measured by a gap sensor and a slip ring under operational conditions to observe the behavior of the lubrication mechanism in detail. To investigate the effect according to the valve plate types in view of the fluid film, three different types were designed. Leakage flow rate and shaft torque were also measured to clarify the effect according to the valve plate types. A broad range of experiments were conducted to provide reasonable data on the effect of fluid film. In this experiments two main parameters were found, of which the one is the discharge pressure and the other is valve plate geometry. As a result, we found that the spherical valve plate could get more stable fluid film thickness, maintain good efficiency for high pressure range than the other types.

  • PDF

고압 LPG/디젤연료의 분무특성 비교 (Comparison of LPG/Diesel Sprays in high Pressure Injection System)

  • 박권하
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2000년도 춘계학술대회 논문집(Proceeding of the KOSME 2000 Spring Annual Meeting)
    • /
    • pp.77-85
    • /
    • 2000
  • LPG gains many advantages of a high octane number low emissions and low cost over conventional fuel. The fuel has been naturally used in engines to save running cost but the first generation fuel feeding system was not satisfied with stringent requirement for exhaust emissions, A liquid direct injection system into a cylinder has been suggested as a next generation system to maximize a fuel economy as well as to reduce emissions. In this paper LPG sprays are compared with diesel sprays in a high pressured surrounding condition in order to understand the high pressure spray characteristics, The spray images show that LPG spray penetrates further soon after the injection then the sprays stays in a distant. it may explain the flashing effect of LPG.

  • PDF

한국표준형 원전 증기발생기 Stay 용접부 자동검사시스템 및 현장 검증 (Field Application of Ultrasonic Inspection System for Stay Welds at Steam Generator of KSNP)

  • 임사회;박치승;박철훈;주금종;노희충;윤광식
    • 한국압력기기공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.37-42
    • /
    • 2010
  • The stay cylinder weld at the steam generator of Korean Standard Nuclear Power Plants is safety class I component and is subjected to be inspected by the volumetric examination such as ultrasonic method. As accessibility of this area is limited due to the narrow space and high radiation, the existing manual inspection method involves various difficulties. Moreover operators may be exposed to internal contamination by contaminated dust during the surface buffing process to improve the inspection reliability of this area. Recently the new automatic inspection system for stay cylinder welds has been developed. The inspection system basically consists of a driving assembly, data acquisition device and signal processing units. The driving assembly is classified by 1) the scanner for inspecting and buffing the weld, 2) pillars for guiding the scanner and 3) the base frame for loading and supporting pillars. The scanner has 4 sensor modules to inspect in 4 refracted angles and 4 incident directions. These components can be inserted into the skirt of the stay cylinder through the manway hole and assembled easily by one-touch in the skirt. Data acquisition device and signal processing units developed in previous works are also newly upgraded for better processing of data analysis and evaluation. The system has been successfully demonstrated not only in the mock-up but also in the field. In this paper, newly developed inspection system for the stay cylinder weld of the steam generator is introduced and their field applications are discussed.

  • PDF

단기통 엔진에서 대유량 EGR을 통한 저온 연소 특성 (Characteristics of Low Temperature Combustion in Single Cylinder Engine by High EGR Rate)

  • 조상현;오광철;이춘범
    • 한국자동차공학회논문집
    • /
    • 제17권4호
    • /
    • pp.79-85
    • /
    • 2009
  • Low temperature combustion regime for the simultaneous reduction of nitrogen oxides ($NO_x$) and paticulate matter (PM) is demonstrated in single cylinder engine at various operating parameters, such as EGR rate, injection timing, EGR temperature, amount of fuel and swirl rate. Low temperature combustion is accomplished by high exhaust gas recirculation (EGR) rate in this study. Generally, the emission of $NO_x$ almost completely disappears and PM significantly increases in the first decreasing regime of oxygen concentration but after peaking about 10~12% oxygen concentration, PM then decreases regardless of fuel injection quantity. Low temperature combustion regime was extended by low EGR temperature, high injection pressure and low amount of fuel.

Multi-cavity Piston에 의한 디젤기관의 연소성 향상에 관한 연구 (The Study for Improving the Combustion in a D.I. Diesel Engine using Multi-cavity Piston)

  • 박철환;방중철
    • 한국연소학회지
    • /
    • 제20권3호
    • /
    • pp.13-20
    • /
    • 2015
  • The performance of a direct-injection diesel engine often depends on the strength of swirl or squish, the shape of combustion chamber, the number of nozzle holes, etc. This is natural because the combustion in the cylinder was affected by the mixture formation process. Since the available duration to make the mixture formation of air-fuel is very short, it is difficult to make complete mixture. Therefore, an early stage of combustion is violent, which leads to the weakness of noise and vibration. In this paper, the combustion process of a common-rail diesel engine was studied by employing two kinds of pistons. One has several cavities on the piston crown to intensify the squish during the compression stroke in order to improve the atomization of fuel, we call this multi cavity piston in this paper. The other is a toroidal single cavity piston, generally used in high speed diesel engines. To take photographs of flame and flaming duration, a four-stroke diesel engine was remodeled into a two-stroke visible single cylinder engine and a high speed video camera was used.

차량용 사축식 피스톤 펌프의 피스톤 링과 실린더 보어간의 윤활특성에 관한 연구 (A study on lubrication characteristics between piston ring and cylinder bore of bent-axis type piston pump for vehicle)

  • 정재연;조인성;송규근;백일현;오석형;정석훈;정용욱
    • Tribology and Lubricants
    • /
    • 제23권5호
    • /
    • pp.201-206
    • /
    • 2007
  • The bent-axis type piston pump which is driven by the piston rod works on the way that the piston rod drives the cylinder block, so the taper angle of the piston rod and the swivel angle between the cylinder block and the shaft are very important design factors. If the above factors cannot satisfy the conditions of optimum design, the friction loss between the cylinder bore and the piston increases, and the pump can even fail to work under conditions of severe friction and wear. Since the piston reciprocates in the cylinder bore with high velocity, and at the same time it rotates on its own axis and revolves on the center of the cylinder block, the decrease of the volume efficiency generated on account of the leakage between the cylinder bore and the piston. Therefore, to prevent this case, the piston ring is designed at the end of the piston, and the friction characteristics between the piston ring and the cylinder bore are in need of research due to its great influence on the performance of piston pump. Thus, in this paper, the elastic hydraulic oil's lubrication analyses of the film thickness, the pressure distribution, and the friction force, and so on, have been performed, and the lubrication characteristics between the piston ring and the cylinder bore are explored by the results of the numerical analysis, and it is contributed to realize the higher efficiency and the more advanced performance of the bent-axis type piston pump.

관로의 전달 특성을 고려한 공기압 실린더 위치 제어계의 모델링 (Modeling of a Pneumatic Cylinder Position Control system Considering Transfer Characteristics of a Transmission Line)

  • 장지성;강보식;지상원
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.731-736
    • /
    • 2004
  • In this study, a linearized model of pneumatic cylinder position control system including transmission line is proposed. The transmission line using compressible fluid has a nonlinear transfer characteristics because that the frequency response of it is changed by the flowing state of the fluid. But, when the pressure difference between both sides of transmission line is low, the effect of resonance characteristics of it under high frequency range can be neglected because of the friction force and low pass characteristics of the position control system. Therefore, the transmission line can be modeled by second order transfer function and the natural frequency, damping ratio and gain are changed by the diameter and length of it. The effectiveness of the proposed model is proved by comparison of simulation results using proposed model with experimental results and simulation results using conventional model.

  • PDF