• Title/Summary/Keyword: high pressure $CO_2$

Search Result 986, Processing Time 0.031 seconds

High-pressure Phase Behavior of 1-propanol / Carbon Dioxide Binary System (1-Propanol / CO2 이성분계의 고압 상거동)

  • Han, Chang-Nam;Kang, Choon-Hyoung
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.763-767
    • /
    • 2010
  • High-pressure phase behavior for the binary mixture of 1-propanol with supercritical $CO_2$ has been measured by means of a high-pressure phase equilibrium apparatus equipped with a variable-volume view cell. The equilibrium loci of the pressure - composition and pressure - temperature were obtained for the binary mixture of 1-propanol + $CO_2$ system at 305.15 K, 313.15 K, 323.15 K and 333.15 K, and from 2 MPa to 11 MPa. The critical temperature of the mixture increased with the temperature. The pressure-composition line for the binary mixture of $CO_2$-1-propanol system showed a typical type-II phase behavior. The experimental P-x envelopes were correlated by using the Peng-Robinson equation of state in a satisfactory manner to obtain the parameters with $k_{ij}=0.116$ and ${\eta}_{ij}=-0.065$.

Experimental Study on Compact type CO2 Gas Cooler(2) - Experiments and Predictions on Heat Flowrate and Pressure Drop - (CO2 가스쿨러용 콤팩트열교환기 개발에 관한 연구(2) - 열유량과 압력강하에 관한 실험 및 예측 -)

  • Oh, Hoo-Kyu;Son, Chang-Hyo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.34 no.2
    • /
    • pp.259-266
    • /
    • 2010
  • The heat flowrate and pressure dorp of $CO_2$ in a multi-tube-in-tube helical coil type gas cooler were predicted using LMTD method and compared with the experimental data. The mass flowrate of $CO_2$ and coolant were varied from 0.06 to 0.075 [kg/s], and the cooling pressure of gas cooler were from 8 to 10 [MPa], respectively. The LMTD method is used to predict the heat flowrate and pressure drop of supercritical $CO_2$ during in-tube cooling. The equations used by LMTD method were Gnielinski correlation for $CO_2$ and Dittus-Boelter correlation for coolant, respectively. The equation used to predict the pressure drop of $CO_2$ and coolant is Blasius correlation. In comparison of heat flowrate and pressure drop of $CO_2$ measured by experiment to that predicted by LMTD method, the experimental heat flowrate and pressure drop of $CO_2$ in the multi-tube-in-tube helical coil type gas cooler shows a relatively good agreement with that predicted by LMTD method.

Practical Algorithms for the Effective Operation of a $CO_2$ Air-conditioner (이산화탄소에어컨의 효율적인 운용을 위한 실용알고리즘)

  • Han, Do-Young;Park, Seung-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2009.06a
    • /
    • pp.435-440
    • /
    • 2009
  • For the effective control of a $CO_2$ air-conditioning system, the system high-side pressure algorithm, the indoor temperature algorithm, and the outdoor fan algorithm were developed. The system high-side pressure algorithm was composed of the setpoint algorithm, the reset algorithm, and the electronic expansion valve control algorithm. The indoor temperature algorithm was composed of the compressor control algorithm and the indoor fan control algorithm. These algorithms were tested by using mathematical models developed from the previous study. Results from the setpoint step change test and the disturbance test showed good control performances. Therefore, algorithms developed in this study may practically used for the control of a $CO_2$ air-conditioning system.

  • PDF

CaO Manufacture for $CO_2$ Adsorption at a High Temperature (고온에서의 이산화탄소 흡착을 위한 흡착제 CaO 제조)

  • Lee Tae-Jong;Kim Gil-Soo;Baek Il-Hyun;Kim Bu-Ung
    • Journal of the Korean Institute of Gas
    • /
    • v.5 no.4 s.16
    • /
    • pp.27-32
    • /
    • 2001
  • It is desired that carbon dioxide causing a greenhouse effect be removed at a high temperature and high pressure in a steam reforming reaction. In this research, a pellet form of adsorbent CaO is employed to capture $CO_2$. The adsorbent was manufactured using a high pressure molding on powdered $CaCO_3$ followed by calcination. Then its properties were analyzed and the adsorption experiments were carried out in a batch adsorption chamber. The pore area was found to be dependent on a molding pressure and the pore distribution showed two peaks. It is examined that $CO_2$ binds to CaO by means of chemisorption and its maximum conversion is nearly $80\%$ at $700^{\circ}C$.

  • PDF

Electrochemical Performance of Li4Ti5O12 Particles Manufactured Using High Pressure Synthesis Process for Lithium Ion Battery (초고압 합성법으로 제조한 리튬이온전지 음극활물질 Li4Ti5O12의 전기화학적 특성)

  • Ji, Sung Hwa;Jo, Wan Taek;Kim, Hyun Hyo;Kim, Hyojin
    • Korean Journal of Materials Research
    • /
    • v.28 no.6
    • /
    • pp.337-342
    • /
    • 2018
  • Using a high pressure homonizer, we report on the electrochemical performance of $Li_4Ti_5O_{12}(LTO)$ particles manufactured as anode active material for lithium ion battery. High-pressure synthesis processing is performed under conditions in which the mole fraction of Li/Ti is 0.9, the synthesis pressure is 2,000 bar and the numbers of passings-through are 5, 7 and 10. The observed X-ray diffraction patterns show that pure LTO is manufactured when the number of passings-through is 10. It is found from scanning electron microscopy analysis that the average size of synthesized particles decreases as the number of passings-through increases. $LiCoO_2-based$ active cathode materials are used to fabricate several coin half/full cells and their battery characteristics such as lifetime, rate capability and charge transfer resistance are then estimated, revealing quite good electrochemical performance of the LTO particles as an effective anode active material for lithium secondary batteries.

Numerical Analysis on Depressurization of High Pressure Carbon Dioxide Pipeline (고압 이산화탄소 파이프라인의 감압거동 특성에 관한 수치해석적 연구)

  • Huh, Cheol;Cho, Meang Ik;Kang, Seong Gil
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.19 no.1
    • /
    • pp.52-61
    • /
    • 2016
  • To inject huge amount of $CO_2$ for CCS application, high pressure pipeline transport is accompanied. Rapid depressurization of $CO_2$ pipeline is required in case of transient processes such as accident and maintenance. In this study, numerical analysis on the depressurization of high pressure $CO_2$ pipeline was carried out. The prediction capability of the numerical model was evaluated by comparing the benchmark experiments. The numerical models well predicted the liquid-vapor two-phase depressurization. On the other hands, there were some limitations in predicting the temperature behavior during the supercritical, liquid phase and gaseous phase expansions.

Numerical Model Simulation of DF-CO$_2$ Transfer Chemical Laser

  • Kim, Sung-Ho;Cho, Ung-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.3
    • /
    • pp.282-288
    • /
    • 1989
  • Theoretical analysis of DF-$CO_2$ transfer chemical laser is performed through simple kinetic model consisting of 30 chemical reactions. In this model, we calculate the power theoretically by solving the rate equations, which are related to the $D_2\;+\;F_2$ chain reaction and the DF-$CO_2$ resonance energy transfer, combined with both the gain processes and the stimulated emission processes. The calculated powers are verified with previously reported results in good agreements. The output energy rises linearly with the increase in pressure, and the duration time of output pulse show the inverse dependence on pressure. Through the detailed calculation of temperature and concentrations of reactants as a function of time, it is found that the deactivation processes of DF(v) can be neglected in low pressure, but they have to be considered in high pressure. From the parametric study for the variation on [$D_2]/[F_2$] and [$CO_2]/[D_2\;+\;F_2$] at several constant total pressure, the optimum lasing conditions are found to be in a range of 1/3 to 1 and 2 to 4, respectively.

High-pressure synchrotron X-ray diffraction study of tremolite and actinolite in various fluids

  • Kong, Mihye;Vogt, Thomas;Lee, Yongjae
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1218-1224
    • /
    • 2018
  • Pressure-dependent structural and morphological changes of two amphibole minerals, tremolite and actinolite, were investigated up to 7.0 GPa using synchrotron X-ray powder diffraction underthree different pressure transmission media (PTM): water (W), $CO_2$ and silicone oil (SI). The elastic response of tremolite and actinolite are found to be dependent on the PTM used. When using water (W) as PTM, tremolite and actinolite show normal volume contractions with bulk moduli of 74(1) and 78(1) GPa, respectively. When using $CO_2$ as PTM, we observe the formation of calcite from tremolite above 3.8(1) GPa, whereas actinolite did not show any carbonation reaction. Under silicone oil PTM, we observe modulated volume contraction behaviors in both samples, compared to water and $CO_2$ PTM, with bulk moduli in the order of 90(1) and 94(4) GPa for tremolite and actinolite, respectively.

Isotope Selectivity in the CO$_2$Laser Induced Decomposition of Trichloroethylene-H and Trichloroethylene-D

  • Koo Sang Man;Chun Byung Soo;Choo Kwang Yul
    • Bulletin of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.96-101
    • /
    • 1989
  • The infrared multiphoton decomposition of trichloroethylene-H(TCE-H) and trichloroehtylene-D(TCE-D) was studied by using the high power $CO_2$ laser. The pressure dependence of TCE-H decomposition showed that the HCl elimination channel to form ClC ≡ CCl was the major step at high pressures, while the HC ≡ CCl formation step became important at low pressures. $Cl_2C$ = CHCl ${\rightarrow}$ (high pressure) ClC ${\equiv}$ CCl + HCl ${\rightarrow}$ (low pressure) HC ${\equiv}$ CCl + 2Cl${\cdot}$($Cl_2$) The IRMPD of TCE-H and TCE-D mixtures with 10P(20) laser line showed that optimum conditions of large isotope selectivity were the low system pressures and high laser powers. The experimentally observed dependence of the branching ratios on the pressure and laser fluence, and the isotope selectivity coefficients were quantitatively explained by using the modified energy grained master equations (EGME) model.

Measuring Interfacial Tension between Brine and Carbon Dioxide in Geological CO2 Sequestration Conditions using Pendant Bubble Methods (수적(垂滴)법을 이용한 이산화탄소 지중저장 조건에서의 염수-이산화탄소 간 계면장력 측정)

  • Park, Gyuryeong;An, Hyejin;Kim, Seon-ok;Wang, Sookyun
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.6
    • /
    • pp.46-55
    • /
    • 2016
  • This experimental study was aimed to estimate interfacial tension of brine-$CO_2$ by using a pendant bubble method and image analysis. Measurements were performed for wide ranges of temperatures, pressures, and salinities covering reservoir conditions in Pohang basin, a possible candidate for $CO_2$ storage operation in Korea. The profiles of $CO_2$ bubbles in brine obtained from image analysis with the densities of brine and $CO_2$ from previous studies were applied to Laplace-Young equation for calculating interfacial twnsion in brine-$CO_2$ system. The experimental results reveals that the interfacial tension is significantly affected by reservoir conditions such as pressure, temperature and water salinity. For conditions of constant temperature and water salinity, the interfacial tension decreases as pressure increases for low pressures (P < $P_c$), and approaches to a constant value for high pressures. For conditions of constant pressure and water salinity, the interfacial tension increases as temperature increases for T < $T_c$, with an asymptotic trend towards a constant value for high temperatures. For conditions of constant pressure and temperature, the interfacial tension increases with increasing water salinity. The trends in changes of interfacial tension can be explained by the effects of the reservoir conditions on the density difference of brine and $CO_2$, and the solubility of $CO_2$ in brine. The information on interfacial tensions obtained from this research can be applied in predicting the migration and distribution of injecting and residual fluids in brine-$CO_2$-rock systems in deep geological environments during geological $CO_2$ sequestrations.