• Title/Summary/Keyword: high power density.

Search Result 2,160, Processing Time 0.032 seconds

Development of Airborne High Density High Voltage Power Supply for Traveling Wave Tubes

  • Park Young-Ju
    • Journal of Power Electronics
    • /
    • v.5 no.4
    • /
    • pp.257-263
    • /
    • 2005
  • This paper describes the development and testing results of a high density High Voltage Power Supply (HVPS) that drives microwave Traveling Wave Tubes (TWTs) of phased array transmitters for airborne EW systems. The HVPS is designed to consist of a number of modules connected in series. Among them, especially, the high-density pulse transformer module including the resonant circuit is newly designed to make the HVPS much more reliable. In addition, this paper describes the development of high voltage solid-state modulation using fast switching devices (FETs) and also represents the test results of a modulator module.

A Unified Analysis of Low-Power and High-Power Density Laser Welding Processes with Evolution of Free Surface (자유표면변형을 고려한 저에너지밀도 및 고에너지밀도 레이저 용접공정 통합 해석)

  • Ha Eung-Ji;Kim Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1111-1118
    • /
    • 2005
  • In this study, a unified numerical investigation has been performed on the evolution of weld pool and key-hole geometry during low-power and high-power density laser welding. Unsteady phase-change heat transfer and fluid flow with the surface tension are examined. The one-dimensional vaporization model is introduced to model the overheated surface temperature and recoil pressure during high-power density laser welding. It is shown that Marangoni convection in the weld pool is dominant at low-power density laser welding, and the keyhole with thin liquid layer and the hump are visible at high-power density laser welding. It is also shown that the transition from conduction welding to penetration welding fur iron plate exists when the laser power density is about $10^6W/Cm^2$.

Low Power Design on Heater and Cathode of Electron Gun for High Resolution CRT (고해상도 CRT용 전자총의 히터 및 캐소드 저전력 설계)

  • Kim Hack-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.6
    • /
    • pp.618-625
    • /
    • 2005
  • This paper has achieved that an optimal design and experiments of heater and cathode of electron gun that serve to embody high current density in CRT display. For the high brightness, high resolution and larger size in CRT display, high current density of electron gun is indispensible. An Impregnation style cathode is used, and must heighten operating temperature of heater to get high current density for this, it is proportional hereupon and power dissipation increases. In this paper, to get low power cathode with high current density, There are produced and tested sample that differ lead type of heater, coating method, the pitch and number of winding of the first and second coiling in the heat emission area for the low power design of high current density cathode heater in this paper.

Recent Progress Trend in Motor and Inverter for Hybrid Vehicle (하이브리드 자동차용 모터 및 인버터 최신 동향 분석)

  • Kim, Sung-Jin;Hong, Sueng-Min;Nam, Kwang-Hee
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.5
    • /
    • pp.381-387
    • /
    • 2016
  • Many efforts have focused on the improvement of power density and efficiency by downsizing the motor and inverter. Recently, Toyota, Honda, and GM realized that the compact-sized motor uses the hairpin structure with increased space factor. Reducing the maximum torque from high-speed technique also makes it possible to design the high-power density model. Toyota and Honda used the newly developed power semiconductor IGBT to decrease conduction loss for high-efficiency inverter. In particular, Toyota used the boost converter to increase the DC link voltage for high efficiency in low-torque high-speed region. Toyota and GM also used the double-sided cooling structure for miniaturization of inverter for high-power density.

High Power Density 50kW Bi-directional Converter for Hybrid Electric Vehicle HDC (하이브리드 자동차용 HDC를 위한 50kW급 고전력밀도 양방향 컨버터)

  • Yang, Jung-Woo;Keum, Moon-Hwan;Choi, Yoon;Han, Sang-Kyoo;Kim, Seok-Joon;Kim, Sam-Gyun;Kim, Jong-Pil;Sakong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.2
    • /
    • pp.95-101
    • /
    • 2016
  • This paper proposed a high-power density bidirectional converter for hybrid electric vehicle high-voltage DC-DC converter(HDC). The conventional HDC has two disadvantages. First, large inductance is required to satisfy the ripple current of inductor by low switching frequency (<20 kHz). Second, large core size is required to prevent the saturation of inductor by high current. Compared with the conventional HDC, the proposed HDC can reduce inductance with SiC-FET for high frequency driving. High-power density of I/O capacitors can be achieved through two-phase interleaved method. The high-power density of inductors can be achieved because the offset current of magnetizing inductance is theoretically terminated by using the differential mode coupled inductor instead of using two single inductors. The validity of the proposed converter is proved through the 50 kW prototype.

Development of Planar Transformer and SiC Based 3 kW High Power Density DC-DC Converter for Electric Vehicles (플라나변압기와 SiC 기반의 전기자동차용 3kW 고전력밀도 DC-DC 컨버터 개발)

  • Kim, Sangjin;Suk, Chaeyoung;Hakim, Ramadhan Muhammad;Choi, Sewan;Ryu, Byoungwoo;Park, Sanghun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.2
    • /
    • pp.112-119
    • /
    • 2021
  • This study proposes a design method of high-power-density and high-efficiency low-voltage DC-DC converters using SiC MOSFET and the optimized planar transformer design procedure based on the figure-of-merit. The secondary rectifying circuit of the phase-shifted full-bridge converter is compared to achieve high power density and high efficiency, and the phase-shifted full bridge converter with a current-doubler rectifier is selected. The planar transformer is designed by the proposed optimized design procedure and verified by FEA simulation. To validate the proposed design method, experimental results from a 3 kW prototype are provided. The prototype achieved 95.28% maximum efficiency and a power density of 2.98 kW/L.

Development of An Open Frame Type High Power Density Switching Converter (개방형 고밀도 스위칭 컨버터의 개발)

  • 오용승;김희준
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.9
    • /
    • pp.468-474
    • /
    • 2003
  • This paper describes the development of an open frame type high power density switching converter. It is based on the active clamp forward converter with synchronous rectifier, and packaged by using the open frame and multi-layer printed circuit board (PCB) technology to achieve the higher power density. Furthermore, the windings of transformer and inductor are also realized by multi-layer PCB so that it also contributes to achieve higher power density. Through the experiment on the prototype converter of 50[W], it is confirmed that power density of 50[W/i$n_3$] and maximum efficiency of over 91[%] are obtained.

Optimal Design of GaN-FET based High Efficiency and High Power Density Boundary Conduction Mode Active Clamp Flyback Converter (GaN-FET 기반의 고효율 및 고전력밀도 경계전류모드 능동 클램프 플라이백 컨버터 최적설계)

  • Lee, Chang-Min;Gu, Hyun-Su;Ji, Sang-Keun;Ryu, Dong-Kyun;Kang, Jeong-Il;Han, Sang-Kyoo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.24 no.4
    • /
    • pp.259-267
    • /
    • 2019
  • An active clamp flyback (ACF) converter applies a clamp circuit and circulates the energy of leakage inductance to the input side, thereby achieving a zero-voltage switching (ZVS) operation and greatly reducing switching losses. The switching losses are further reduced by applying a gallium nitride field effect transistor (GaN-FET) with excellent switching characteristics, and ZVS operation can be accomplished under light load with boundary conduction mode (BCM) operation. Optimal design is performed on the basis of loss analysis by selecting magnetization inductance based on BCM operation and a clamp capacitor for loss reduction. Therefore, the size of the reactive element can be reduced through high-frequency operation, and a high-efficiency and high-power-density converter can be achieved. This study proposes an optimal design for a high-efficiency and high-power-density BCM ACF converter based on GaN-FETs and verifies it through experimental results of a 65 W-rated prototype.

Development of High Voltage and High Energy Density Capacitor for Pulsed Power Application (펄스파워용 고전압 고에너지밀도 커패시터 개발)

  • 이병윤;정진교;이우영;박경엽;이수휘;김영광
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.5
    • /
    • pp.203-210
    • /
    • 2003
  • This paper describes high voltage and high energy density capacitor developed for pulsed power applications. The rated voltage of the developed capacitor is DC 22 [kV], the capacitance is 206 [$\mu$F] and the energy density is about 0.7 [kJ/kg]. Polypropylene film and kraft paper were used as the dielectrics. The ratio of the thickness of each dielectric material which consists of the composite dielectric structure, stacking factor and the termination method were determined by the charging and discharging tests on model capacitors. In terms of energy density, the developed capacitor has higher energy density compared with the products of foreign leading companies. In addition, it has been proved that the life expectancy can be more over 2000 shots through the charging and discharging test. The voltage reversal factor was 20%. This capacitor can be used as numerous discharge applications such as military, medical, industrial fields.

Study on SiN and SiCN film production using PE-ALD process with high-density multi-ICP source at low temperature

  • Song, Hohyun;Seo, Sanghun;Chang, Hongyoung
    • Current Applied Physics
    • /
    • v.18 no.11
    • /
    • pp.1436-1440
    • /
    • 2018
  • SiN and SiCN film production using plasma-enhanced atomic layer deposition (PE-ALD) is investigated in this study. A developed high-power and high-density multiple inductively coupled plasma (multi-ICP) source is used for a low temperature PE-ALD process. High plasma density and good uniformity are obtained by high power $N_2$ plasma discharge. Silicon nitride films are deposited on a 300-mm wafer using the PE-ALD method at low temperature. To analyze the quality of the SiN and SiCN films, the wet etch rate, refractive index, and growth rate of the thin films are measured. Experiments are performed by changing the applied power and the process temperature ($300-500^{\circ}C$).