• Title/Summary/Keyword: high porosity

Search Result 1,045, Processing Time 0.028 seconds

Effect of glass powder on the behaviour of high performance concrete at elevated temperatures

  • Kadik, Abdenour;Cherrak, Messaouda;Bali, Abderrahim;Boutchicha, Djilali;Hannawi, Kinda
    • Advances in concrete construction
    • /
    • v.10 no.5
    • /
    • pp.443-454
    • /
    • 2020
  • In recent years, many studies have been done on the performance of concrete containing glass powder (GP). For the purpose of widespread use of GP in concrete mixes, a knowledge of the performance of such a mixture after a fire is essential for the perspective of structural use. This research work was carried out to evaluate the performance of High Performance Concrete (HPC) made with GP after being exposed to elevated temperature. The studied mixtures include partial replacement of cement by GP with up to 30%. The mechanical performance and structural alterations were assessed after high temperature treatment from 200℃ to 800℃. The mechanical performance was evaluated by testing the specimens to the compressive and tensile strength. In addition, the mass loss and the porosity were measured to notice the structural alterations. Changes in microstructure due to temperature was also investigated by the X-ray diffraction (XRD) and thermal gravimetric analyses (TGA) as well as porosity adsorption tests. The results of the concrete strength tests showed a slight difference in compressive strength and the same tensile strength performance when replacing a part of the cement by GP. However, after high temperature exposition, concrete with GP showed better performance than the reference concrete for temperature below 600℃. But, after heating at 800℃, the strength of the concrete with GP drop slightly more than reference concrete. This is accompanied by an important increase in mass loss and water porosity. After the microstructure analysis, no important changes happened differently for concrete with GP at high temperature except a new calcium silica form appears after the 800℃ heating.

Influence of palm oil fuel ash on behaviour of green high-performance fine-grained cement mortar

  • Sagr, Salem Giuma Ibrahim;Johari, M.A. Megat;Mijarsh, M.J.A.
    • Advances in materials Research
    • /
    • v.11 no.2
    • /
    • pp.121-146
    • /
    • 2022
  • In the recent years, the use of agricultural waste in green cement mortar and concrete production has attracted considerable attention because of potential saving in the large areas of landfills and potential enhancement on the performance of mortar. In this research, microparticles of palm oil fuel ash (POFA) obtained from a multistage thermal and mechanical treatment processes of raw POFA originating from palm oil mill was utilized as a pozzolanic material to produce high-performance cement mortar (HPCM). POFA was used as a partial replacement material to ordinary Portland cement (OPC) at replacement levels of 0, 5, 10, 15, 20, 25, 30, 35, 40% by volume. Sand with particle size smaller than 300 ㎛ was used to enhance the performance of the HPCM. The HPCM mixes were tested for workability, compressive strength, ultrasonic pulse velocity (UPV), porosity and absorption. The results portray that the incorporation of micro POFA in HPCMs led to a slight reduction in the compressive strength. At 40% replacement level, the compressive strength was 87.4 MPa at 28 days which is suitable for many high strength applications. Although adding POFA to the cement mixtures harmed the absorption and porosity, those properties were very low at 3.4% and 11.5% respectively at a 40% POFA replacement ratio and after 28 days of curing. The HPCM mixtures containing POFA exhibited greater increase in strength and UPV as well as greater reduction in absorption and porosity than the control OPC mortar from 7 to 28 days of curing age, as a result of the pozzolanic reaction of POFA. Micro POFA with finely graded sand resulted in a dense and high strength cement mortar due to the pozzolanic reaction and increased packing effect. Therefore, it is demonstrated that the POFA could be used with high replacement ratios as a pozzolanic material to produce HPCM.

Effect of Spraying Distance on Properties of $B_4C$ Coating

  • Zeng-Y;Zhang-Y.F;Huang-J.Q
    • Journal of the Korean Vacuum Society
    • /
    • v.7 no.s1
    • /
    • pp.179-182
    • /
    • 1998
  • Boron carbide coating has some very attractive properties for nuclear and semiconductor industry. The potential of atmosheric plasma spray as manufacturing methods for $B_4C$ coating was discussed. In this work, the boron carbide coating with low porosity, high microhardness and good life of thermal shock resistance was deposited by the control of spraying distance. The relationship between the properties of $B_4C$ coatings and their spraying distance was studied.

  • PDF

An Experimental Study on the Durability Characterization using Porosity (시멘트 모르타르의 공극률과 내구특성과의 관계에 대한 실험적 연구)

  • Park, Sang Soon;Kwon, Seung-Jun;Kim, Tae Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2A
    • /
    • pp.171-179
    • /
    • 2009
  • The porosity in porous media like concrete can be considered as a durability index since it may be a routine for the intrusion of harmful ions and room for the keeping moisture. Recently, modeling and analysis techniques for deterioration are provided based on the pore structure with the significance of durability and the relationship between porosity and durability characteristics is an important issue. In this paper, a series of mortar samples with five water to cement ratios are prepared and tests for durability performance are carried out including porosity measurement. The durability test covers those for compressive strength, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient. They are compared with water to cement ratios and porosity. From the normalized data, when porosity increases to 1.45 times, air permeability, chloride diffusion coefficient, absorption, and moisture diffusion coefficient decrease to 2.3 times, 2.1 times, 5.5 times and 3.7 times, respectively, while compressive strength decreases to 0.6 times. It was evaluated that these are linearly changed with porosity showing high corelation factors. Additionally, intended durability performances are established from the test results and literature studies and a porosity for durable concrete is proposed based on them.

Fabrication of Porous Yttria-Stabilized Zirconias Controlled by Additives

  • Paek, Yeong-Kyeun;Oh, Kyung-Sik;Lee, Hyuk-Jae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.2 s.297
    • /
    • pp.79-83
    • /
    • 2007
  • To fabricate a thick, porous yttria-stabilized zirconia without cracking and warping, a method for the simultaneous control of the porosity and shrinkage was designed. As a pore former, a potato starch was used. For the control of shrinkage the oxidation of Al metal particles was used. For the sintering of the above powder mixtures, a partial sintering technique was used at $1300^{\circ}C$ for 10 min in air. Upon adding the additives, high open porosity above 53% and a low shrinkage level were obtained. As a result cracking and warping of the sintered body were deterred. This outcome most likely resulted from the compensation of sintering shrinkage due to the volume expansion caused by oxidation of the Al metal particles during heat-treatment.

Specific Resistance (K2´) of Dust Layer Deposited on Porous Media (다공성 필터에서의 여과 분진층 비저항 연구)

  • 이선희;이경미;조영민
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.20 no.3
    • /
    • pp.371-380
    • /
    • 2004
  • In the dust separation by using porous filter media, the structure of dust layer deposited on the filter surface of filter medium directly affects the effective filtration. The present study has investigated the specific resistance (K$_2$') of the dust layer and its porosity ($\varepsilon$$_{c}$) for three different filters; FA composite filter, metal fiber filter and stainless filter. The specific resistance (K$_2$') increased and at the same time the cake porosity ($\varepsilon$$_{c}$) decreased with the increase of filtration velocity, possibly due to the compressible effect of dust layer. However, under the low dust concentration, subsequent dust particles would block the open channels through the layer resulting in high specific resistance of the layer. The FA composite filter among three filters was shown to be the most effective filter for dust cake filtration at low filtration velocities less than 0.1 m/s for an approximate dust concentration of 5 g/㎥.

Computer Simulation for Microstructure Development in Porous Sintered Compacts (다공질 소결체의 조직형성에 관한 컴퓨터 시뮬레이션)

  • Shin, Soon-Ki;Matsubara, Hideaki
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.4 s.287
    • /
    • pp.213-219
    • /
    • 2006
  • A Monte Carlo simulation based on Potts model in a three dimensional lattice was studied to analyze and design microstructures in porous sintered compacts such as porosity, pore size, grain (particle) size and contiguity of grains. The effect of surface energy of particles and the content of additional fine particles to coarse particles on microstructure development were examined to obtain fundamentals for material design in porous materials. It has been found that the larger surface energy enhances sintering (necking) of particles and increases contiguity and surface energy does not change pore size and grain size. The addition of fine particles also enhances sintering of particles and increases contiguity, but it has an effect on increment of pore size and grain size. Such a simulation technique can give us important information or wisdom for design of porous materials, e.g., material system with high surface energy and fine particle audition are available for higher strength and larger porosity in porous sintered compacts with applications in an automobile.

Experiment and Analysis on the Heat Transfer Characteristics of a Channel Filled with Metal Form (발포 금속을 사용하는 채널의 열전달 특성 실험 및 해석)

  • Son, Young-Seok;Shin, Jee-Young;Cho, Young-Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.22 no.7
    • /
    • pp.448-453
    • /
    • 2010
  • Porous media containing complex fluid passage have especially large surface area per unit volume. This study is aimed to identify the heat transfer characteristics of high-porosity metal foams in a horizontal channel. Experiment is performed under various heat flux, velocity and pore density. Nusselt number decreases with higher pore density. Metal foams shows higher heat transfer coefficients than pin-fin structure with the same porosity. This is due to the more complex flow passage and larger heat transfer area based on the structure of the metal foams. The analysis on the pin-fin structure may not be suitable to the metal foam structure but should be identified extensively through further study.

Study on relations between porosity and damage in fractured rock mass

  • Xue, Xinhua
    • Geomechanics and Engineering
    • /
    • v.9 no.1
    • /
    • pp.15-24
    • /
    • 2015
  • The porosity is often regarded as a linear function of fluid pressure in porous media and permeability is approximately looked as constants. However, for some scenarios such as unconsolidated sand beds, abnormal high pressured oil formation or large deformation of porous media for pore pressure dropped greatly, the change in porosity is not a linear function of fluid pressure in porous media, and permeability can't keep a constant yet. This paper mainly deals with the relationship between the damage variable and permeability properties of a deforming media, which can be considered as an exploratory attempt in this field.

Weldability of Al Alloys,Part I ;Cfacking and Porosity (알루미늄 합금의 용접특성 - part I : 균열 및 기공)

  • 이창희;장래웅
    • Journal of Welding and Joining
    • /
    • v.10 no.3
    • /
    • pp.1-12
    • /
    • 1992
  • A literature review was conducted to survey informations available on the welding metallurgy of aluminum alloys and its effect on fusion weldability, especially on solidification cracking and pore formation. Solidification cracking behavior of Al weld is a complicate matter as compared to other high alloys, where a relatively simple Fe-X(most detrimental elements S, P, B, Si, etc) binary diagram can be successfully applicable. Both additive and synergistic effects of elements should be considered together. A same element play a different role from system to system. Porosity, caused by hydrogen contamination of the weld is one of the most troublesome welding problems. The primary sources of hydrogen are believed to be an absorbed moisture on the filler metal or base metal and in the shielding gas. It is extremely important that reliable quality-control procedures be employed to eliminate all possible sources of hydrogen contamination. Selection of proper process and parameters is sometimes more important than controlling of alloying elements in order to make a defect-free weld.

  • PDF