• Title/Summary/Keyword: high porosity

Search Result 1,045, Processing Time 0.029 seconds

Effects of Limestone Powder and Silica Fume on the Hydration and Pozzolanic Reaction of High-Strength High-Volume GGBFS Blended Cement Mortars (고강도 고함량 고로슬래그 혼합 시멘트 모르터의 수화 및 포졸란 반응에 미치는 석회석 미분말과 실리카퓸의 영향)

  • Jeong, Ji-Yong;Jang, Seung-Yup;Choi, Young-Cheol;Jung, Sang-Hwa;Kim, Sung-Il
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.2
    • /
    • pp.127-136
    • /
    • 2015
  • To evaluate the effects of limestone powder and silica fume on the properties of high-strength high-volume ground granulated blast-furnace slag (GGBFS) blended cement concrete, this study investigated the rheology, strength development, hydration and pozzolanic reaction characteristics, porosity and pore size distribution of high-strength mortars with the water-to-binder ratio of 20, 50 to 80% GGBFS, up to 20% limestone powder, and up to 10% silica fume. According to test results, compared with the Portland cement mixture, the high-volume GGBFS mixture had much higher flow due to the low surface friction of GGBFS particles and higher strength in the early age due to the accelerated cement hydration by increase of free water; however, because of too low water-to-binder ratio and cement content, and lack of calcium hydroxide content, the pozzolanic reactio cannot be activated and the long-term strength development was limited. Limestone powder did not affect the flowability, and also accelerate the early cement hydration. However, because its effect on the acceleration of cement hydration is not greater than that of GGBFS, and it does not have hydraulic reactivity unlikely to GGBFS, compressive strength was reduced proportional to the replacement ratio of limestone powder. Also, silica fume and very fine GGBFS lowered flow and strength by absorbing more free water required for cement hydration. Capillary porosities of GGBFS blended mortars were smaller than that of OPC mortar, but the effect of limestone powder on porosity was not noticeable, and silica fume increased porosity due to low degree of hydration. Nevertheless, it is confirmed that the addition of GGBFS and silica fume increases fine pores.

Thick Positive Electrode using Polytetrafluorethylene (PTFE) Binder for High-Energy-Density Lithium-ion Batteries (높은 에너지 밀도의 리튬이온 이차전지를 위한 PTFE 바인더를 적용한 고로딩 양극)

  • Kang, Jeong Min;Kim, Hyoung Woo;Jang, Young Seok;Kim, Haebeen;Ryu, Ji Heon
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.28-33
    • /
    • 2021
  • Many researchers have increased the loading level of electrodes to improve the energy density of secondary batteries. In this study, high-loading NCM523 (LiNi0.5Co0.2Mn0.3O2) positive electrode is manufactured using a polytetrafluoroethylene (PTFE) binder, not the conventional polyvinylidene fluoride (PVdF) binder, which has been commonly used in lithium-ion batteries. Through the kneading process using PTFE suspension, not the conventional slurry process using PVdF solution in N-methyl-2-pyrrolidinone (NMP), thick electrodes with high loading are easily manufactured. When the PTFE and PVdF-based electrodes are prepared at a loading level of 5.0 mAh/cm2, respectively, the PTFE-based electrode shows better cycle performance and rate capability than those of PVdF-based electrodes. The electrode manufactured by the kneading process using a PTFE binder has high electrode porosity due to insufficient roll-press, but the porosity can be lowered by high temperature roll-press over 120℃. However, there is no significant difference in cycle performance according to the roll press temperature. In addition, the cycle performance of the high loading electrode is slightly improved by increasing the content of the conductive material. Overall, the PTFE binder can improve the performance of the high loading electrode, but additional solutions will be needed.

A Kinetic Study on the Ammonia Nitrogen Adsorption by Physical Characteristics of Activated Carbon (활성탄 물성에 따른 암모니아성 질소 흡착의 동력학적 연구)

  • Seo, Jeong-beom;Kang, Joon-won;Lee, Ik-soo
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.311-316
    • /
    • 2008
  • This study aimed to obtain equilibrium concentration on adsorption removal of ammonia nitrogen by activated carbon, to express the adsorption characteristics following Freundlich isotherm and also, based on the value obtained, to investigate the relationship between physical characteristics of activated carbon and dynamics of ammonia nitrogen removal by obtaining rate constant and effective pore diffusivity. The results summarized from this study are as follows. It was noted that powdered activated carbon showed better adsorption ability than granular activated carbon. The value of constant (f) of Freundlich isotherm of powered activated carbon was $4.6{\times}10^{-8}$ which is bigger than that of granular activated carbon. The adsorption rate constant on ammonia nitrogen of powered activated carbon with high porosity and low effective diameter was highest as 0.416 hr-1 and the effective pore diffusivity ($D_e$) was lowest as $1.17{\times}10^{-6}cm^2/hr$, and the value of ammonia nitrogen adsorption rate constant of granular activated carbon was $0.149{\sim}0.195hr^{-1}$. It was revealed that, with the same amount of dosage, the adsorptive power of activated carbon with lower effective diameter and bigger porosity was better and its rate constant was also high. With a little adsorbent dosage of 2 g, there was no difference removal ability of ammonia nitrogen as change of adsorption properties.

Cracking Behavior Under Contact Stress in Densely Coated Porous Engineering Ceramics (치밀층으로 코팅된 다공성 엔지니어링 세라믹스에서의 접촉응력에 의한 균열 거동)

  • Kim, Sang-Kyum;Kim, Tae-Woo;Kim, Do-Kyung;Lee, Kee-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.8 s.279
    • /
    • pp.554-560
    • /
    • 2005
  • The engineering ceramic needs the properties of high strength, hardness, corrosion-resistance and heat-resistance in order to withstand thermal shock or applied nonuniform stresses without failure. The densely coated porous ceramics can be used for machine component, electromagnetic component, bio-system component and energy-system component by their high-performances from superior coating properties and light-weight characteristics due to the structure including pore by itself. In this study we controlled the porosity of silica and alumina, $8.2\~25.4\%$ and $23.4\~36.0\%$, respectively, by the control of sintering temperature and starting powder size. We made bilayer structures, consisting of a transparent glass coating layer bonded to a thick substrate of different porous ceramics by a thin layer of epoxy adhesive, facilitated observations of crack initiation and propagation. The elastic modulus mismatch could be controlled using different porous ceramics as the substrate layer. Then we applied 150 N force using WC sphere with a radius of 3.18 mm by Hertzian indentation. As a result, the crack initiation in the coating layer was delayed at lower porosity in the substrate layer, and the damage in the coating layer was relatively smaller at the bilayer structure coated on higher elastic substrate.

Preparation of Paper from Pitch-based Activated Carbon Fibers and Adsorption Characteristics (피치계 활성탄소섬유를 이용한 페이퍼 제조 및 흡착특성)

  • Kim, Hyeon-Seok;Kim, Hak-Yong;Jung, Woo-Young
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.256-261
    • /
    • 2016
  • In this work, we have prepared the filter papers with the pitch-based activated carbon fibers and the binder fibers using wet-laid process. The influence of the binder fiber on the porosity of the filter papers has been investigated by using nitrogen adsorption isotherms at 77 K and a scanning electron microscope (SEM). As a result, the specific surface area has increased with an decrease in the content of binder fiber. It has been shown that the optimum ratio of pitch-based activated carbon fibers and the binder fibers is 70:30, resulting in high porosity, excellent bonding strength, large specific surface area ($650.4m^2/g$) and high noxious gas removal efficiency (86.9%). In addition, it has been observed that the mean pore size distribution of the fiber papers has not been affected by the binder fiber.

The Mechanical Properties of Limestones Distributed in Jecheon (제천지역 석회암의 역학적 특성에 관한 연구)

  • Kim, Jong Woo;Kim, Min Sik;Kim, Pyoung Gi;Nor, Seung Jae;Park, Chan;Jo, Young Do;Park, Sam Gyu
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.354-364
    • /
    • 2012
  • In order to evaluate the physical properties of rock which might serve as a database for both mining and civil works, a lot of laboratory tests for Jecheon limestones were conducted to find unit weight, absorption ratio, porosity, elastic wave velocity, uniaxial compressive strength, Young's modulus, poisson's ratio, tensile strength, shore hardness, friction angle and cohesion. On investigation of the mechanical properties of both the gray limestone and the clayey limestone distributed in the studied region, the clayey limestone turned out to have more weak mechanical properties which might come from low unit weight, high absorption ratio and high porosity of rocks. The failure criteria of Jecheon limestones were discussed by means of both Mohr-Coulomb criterion and Hoek-Brown criterion. Regression analyses of the physical properties obtained from a lot of laboratory tests were also conducted by means of both linear and multiple regression analyses.

Physicochemical characterization of porcine bone-derived grafting material and comparison with bovine xenografts for dental applications

  • Lee, Jung Heon;Yi, Gyu Sung;Lee, Jin Woong;Kim, Deug Joong
    • Journal of Periodontal and Implant Science
    • /
    • v.47 no.6
    • /
    • pp.388-401
    • /
    • 2017
  • Purpose: The physicochemical properties of a xenograft are very important because they strongly influence the bone regeneration capabilities of the graft material. Even though porcine xenografts have many advantages, only a few porcine xenografts are commercially available, and most of their physicochemical characteristics have yet to be reported. Thus, in this work we aimed to investigate the physicochemical characteristics of a porcine bone grafting material and compare them with those of 2 commercially available bovine xenografts to assess the potential of xenogenic porcine bone graft materials for dental applications. Methods: We used various characterization techniques, such as scanning electron microscopy, the Brunauer-Emmett-Teller adsorption method, atomic force microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and others, to compare the physicochemical properties of xenografts of different origins. Results: The porcine bone grafting material had relatively high porosity (78.4%) and a large average specific surface area (SSA; $69.9m^2/g$), with high surface roughness (10-point average roughness, $4.47{\mu}m$) and sub-100-nm hydroxyapatite crystals on the surface. Moreover, this material presented a significant fraction of sub-100-nm pores, with negligible amounts of residual organic substances. Apart from some minor differences, the overall characteristics of the porcine bone grafting material were very similar to those of one of the bovine bone grafting material. However, many of these morphostructural properties were significantly different from the other bovine bone grafting material, which exhibited relatively smooth surface morphology with a porosity of 62.0% and an average SSA of $0.5m^2/g$. Conclusions: Considering that both bovine bone grafting materials have been successfully used in oral surgery applications in the last few decades, this work shows that the porcinederived grafting material possesses most of the key physiochemical characteristics required for its application as a highly efficient xenograft material for bone replacement.

PEI Hollow Fiber Membranes Modified with Fluorinated Silica Nanoparticles for the Recovery of Biogas from Anaerobic Effluents (불화 실리카로 개질된 폴리에테르이미드 중공사막을 이용한 혐기성 유출수로부터 바이오가스 회수)

  • Yun, Kang Hee;Wongchitphimon, Sunee;Bae, Tae-hyun
    • Membrane Journal
    • /
    • v.30 no.5
    • /
    • pp.326-332
    • /
    • 2020
  • In this study, polymer-fluorinated silica composite hollow fiber membranes were fabricated and applied to a membrane contactor for the recovery of methane dissolved in the anaerobic effluent. To prepare the composite membranes, porous hollow fiber substrates were fabricated with Ultem®, a commercial polyetherimide (PEI). Subsequently, fluorinated silica particles were synthesized and coated on the surface via strong covalent bonding. Due to the high porosity, our membrane showed a CH4 flux of 8.25 × 10-5 ㎤ (STP)/㎠·s at the liquid velocity of 0.03 m/s which is much higher that that of commercial polypropylene membrane designed for degassing processes. This is attributed to our membrane's high porosity as well as a superior surface hydrophobicity (120~122°) resulted from the coating with fluorinated silica nanoparticles.

Effects of PTFE Contents on Characteristics of Cathode for Zn Air Batteries (PTFE함량에 따른 아연공기전지의 Cathode 특성연구)

  • Kim, Jee-Hoon;Eom, Seung-Wook;Moon, Seong-In;Yun, Mun-Soo;Kim, Ju-Yong;Yug, Gyeong-Chang;Park, Jeong-Hoo
    • Journal of the Korean Electrochemical Society
    • /
    • v.6 no.3
    • /
    • pp.203-207
    • /
    • 2003
  • Zinc Air batteries obtain their energy density by utilizing ambient oxygen as the cathode materials. And specific capacity of zinc powder is as high as 820 mAh/g. When Zinc Air battery discharged at low current, then discharge voltage profile has very flat pattern until reach to end of voltage. But, when Zinc Air battery discharged at high current, then discharge voltage and energy becomes very low. So we focused on resistance and porosity of cathode with contents of PTFE. Wf studied on the effects of PTFE on performance of Zinc Air batteries. So we have got optimum contents of PTFE binder.

Electrical and Mechanical Characteristics of Ni-YSZ Tubular Support Fabricated by Extrusion (압출공정에 의해 제조된 Ni-YSZ 원통형 음극 지지체의 특성)

  • Yu, Ji-Haeng;Kim, Young-Woon;Park, Gun-Woo;Seo, Doo-Won;Lee, Shi-Woo;Woo, Sang-Kuk
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.12 s.295
    • /
    • pp.768-774
    • /
    • 2006
  • The microstructure of Ni-YSZ cermets was controlled with fine and coarse starting powders (NiO and YSZ) to obtain a optimum strong and conductive tubular anode support for SOFCs. Three types of cermets with different microstructures, i.e., coarse Ni-fine YSZ, fine Ni-coarse YSZ, and fine Ni-fine YSZ, were fabricated to investigate their electrical and mechanical properties. The cermets from fine NiO powder showed high electrical conductivity due to the enhanced percolation of Ni particles. The cermet by foe Ni and coarse YSZ showed excellent electrical conductivity (>1000 S/cm) despite its high porosity $(\sim40%)$ but it showed poor mechanical strength due to the lack of percolation by YSZ particles and due to large pores. Thus fine NiO and YSZ powders were used to make strong and conductive Ni-YSZ support tube by extrusion. The microstructure of the anode tube was modified by the amount of polymeric additives and carbon black, a pore former. Ni-YSZ tube (porosity $\sim34%$) with the finer microstructure showed better performance both in electrical conductivity (>1000 S/cm) and fracture strength $(\sim140\;MPa)$. Either flat or circular NiO-YSZ tubes with the length from 20 to 40cm were successfully fabricated with the optimized composition of materials and polymeric additives.