• Title/Summary/Keyword: high magnetic flux density

Search Result 240, Processing Time 0.024 seconds

Enhancement of Mixing Performance in Viscous Liquid Using an Electromagnetically Driven Microrobot (초소형 로봇을 이용한 점도성 유체의 혼합 효율 향상)

  • Song, Hyeonseok;Park, Yuna;Chung, Sang Kug
    • Journal of the Korean Society of Visualization
    • /
    • v.16 no.2
    • /
    • pp.53-58
    • /
    • 2018
  • This paper presents an electromagnetically driven microrobot for the enhancement of mixing performance in high viscous liquid media such as blood and bone marrow. First, an electromagnetic system was fabricated, and the magnetic flux density generated from the system was compared with the theoretical value. Second, the reciprocating motion of the microrobot was demonstrated in microchannel using electromagnetic system. As a proof of concept, the mixing performance by the electromagnetically driven microrobot in high viscous liquid was investigated using safranin solution. As a result, it was completely mixed within 140 s with the reciprocating motion of the microrobot while it took 1680 s for natural diffusion. In addition, the mixing efficiency was quantitatively evaluated through a mixing index obtained by an image analysis. The proposed method provides not only wireless actuation of a microrobot with a simple design but also high mixing performance in variety of high viscous liquid media.

Fabrication and Characteristics of High-sensitivity Si Hall Sensors for High-temperature Applications (고온용 고감도 실리콘 홀 센서의 제작 및 특성)

  • 정귀상;노상수
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.565-568
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm 6.7$$\times$$10^{-3}$/$^{\circ}C$ and $\pm 8.2$$\times$$10^{-4}$/$^{\circ}C$respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and hip high-temperature operation.

  • PDF

Development of 2W-Level Wireless Powered Energy Harvesting Receiver using 60Hz power line in Electricity Cable Tunnel (전력구 내 지중선을 이용한 2W급 상용주파수 무선전력 수신장치 개발)

  • Jang, Gi-Chan;Choi, Bo-Hwan;Rim, Chun-Taek
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.4
    • /
    • pp.296-301
    • /
    • 2016
  • Using high magnetic flux from a 60 Hz high-current cable, a 2 W wireless-powered energy harvesting receiver for sensor operation, internet of things (IoT) devices, and LED lights inside electrical cable tunnels is proposed. The proposed receiver comprises a copper coil with a high number of turns, a ring-shaped ferromagnetic core, a capacitor for compensating for the impedance of the coil in series, and a rectifier with various types of loads, such as sensors, IoT devices, and LEDs. To achieve safe and easy installation around the power cable, the proposed ring-shaped receiver is designed to easily open or close using a clothespin-shaped handle, which is made of highly-insulated plastic. Laminated silicon steel plates are assembled and used as the core because of their mechanical robustness and high saturation flux density characteristic, in which the thickness of each isolated plate is 0.3 mm. The series-connected resonant capacitor, which is appropriate for low-voltage applications, is used together with the proposed receiver coil. The concept of the figure of merit, which is the product weight and cost of both the silicon steel plate and the copper wire, is used for an optimized design; therefore, the weight of the fabricated receiver and the price of raw material is 750 gf and USD $2 each, respectively. The 2.2 W powering capability of the fabricated receiver was experimentally verified with a power cable current of $100A_{rms}$ at 60Hz.

Texture Evolution during Primary Recrystallization and Effect of Number of Cold Rolling Passes, Heating Rate, and Si Contents in Grain-Oriented Electrical Steel (방향성 전기강판에서 1차 재결정시 Si 함량과 냉간압연 횟수, 승온 속도에 따른 집합조직 발달)

  • Jeon, Soeng-Ho;Park, No Jin
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.31 no.6
    • /
    • pp.269-274
    • /
    • 2018
  • Grain-oriented electrical steel sheets are mainly used as core materials for transformers and motors. They should have excellent magnetic properties such as low core loss, high magnetic flux density and high permeability. In order to improve the magnetic properties of the electrical steel sheet, it is important to form Goss oriented grains with a very strong {110}<001> orientation. Recently, efforts have been made to develop Goss grains by controlling processes such as hot rolling, cold rolling, and primary and secondary recrystallization. In this study, the sheets containing 3.2 and 3.4wt.% Si were used, which were rolled with 1 and 10 passes with total thickness reduction of 89%. Heating was carried out for primary recrystallization with different heating rates of $25^{\circ}C/s$ and $24^{\circ}C/min$ until $720^{\circ}C$. The behavior of Goss-, {411}<148>-, and {111}<112>-oriented grains were analyzed using X-ray diffraction(XRD) and electron back-scatter diffraction(EBSD) analysis. The area fraction of Goss-oriented grains increased with the number of rolling passes during cold rolling; however, after the primary recrystallization, the area fraction of the Goss grains was higher and exact Goss grains were found in the specimens subjected to rapid heating after one rolling pass.

Design of a IMVA Single-Phase HTS Power Transformer

  • Kim, Sung-Hoon;Kim, Woo-Seok;Park, Chan-Bae;Hahn, Song-yop;Park, Kyeong-Dal;Joo, Hyeong-Gil;Hong, Gye-Won
    • Progress in Superconductivity
    • /
    • v.4 no.1
    • /
    • pp.86-89
    • /
    • 2002
  • In this paper, the design of a IMVA single-phase high temperature superconducting(HTS) power transformer with BSCCO-2223 HTS tapes is presented. The rated voltages of each sides of the transformer are 22.9 ㎸ and 6.6 ㎸, respectively The winding of 1MVA HTS transformer is consisted of double pancake type HTS windings, which have advantages of insulation and distribution of high voltage, and are cooled by subcooled liquid nitrogen of 65K. Four HTS tapes were wound in parallel for the windings of low voltage side and the four parallel conductors are transposed. The design of 1MVA HTS transformer, a shell type core made of laminated silicon steel plate is chosen, and the core is separated with the windings by a cryostat with a room temperature bore. The cryostat made of non-magnetic and non-conducting material and a liquid nitrogen sub-cooling system is designed in order to maintain the coolant's temperature of 65K. For electromagnetic analysis of 1MVA HTS transformer, a finite element method of an axis of symmetry is used. The maximum perpendicular component of magnetic flux density of pancake windings is about 0.15T. And through analyzing the magnetic field distribution, an optimal winding arrangement of 1MVA HTS transformer is obtained.

  • PDF

The Effects of Co Addition on Glass Forming Ability and Magnetic Properties for FeSiBNb Ribbon Alloys (FeSiBNb 리본 합금의 비정질 형성능과 자기적 특성에 미치는 Co의 첨가 효과)

  • Lee, Tae-Gyu;Noh, Tae-Hwan
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.3
    • /
    • pp.128-132
    • /
    • 2007
  • The thermal and magnetic properties of amorphous (FeCo)SiBNb ribbon alloys with high glass forming ability have been investigated. The glass forming ability was enhanced by Co substitution in amorphous ($Fe_{1-X}Co_X)_{72}Si_4B_{20}Nb_4$ alloys with the thickness of about $40{\mu}m$. With the increase in Co content, the temperature range of supercooled liquid phase increased indicating the high glass forming ability of the Co-added alloys. Further the ac permeability increased, and the core loss decreased considerably by Co substitution, while small change in $B_8$ (magnetic flux density at 800 A/m) was observed. The frequency characteristics of permeability deteriorated as compared to conventional amorphous ribbon alloys with the thickness of about $20\;{\mu}m$ due to the increased skin effect.

Formation and Characteristics of the Fluorocarbonated SiOF Film by $O_2$/FTES-Helicon Plasma CVD Method

  • Kyoung-Suk Oh;Min-Sung Kang;Chi-Kyu Choi;Seok-Min Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1998.02a
    • /
    • pp.77-77
    • /
    • 1998
  • Present silicon dioxide (SiOz) 떠m as intennetal dielectridIMD) layers will result in high parasitic c capacitance and crosstalk interference in 비gh density devices. Low dielectric materials such as f f1uorina뼈 silicon oxide(SiOF) and f1uoropolymer IMD layers have been tried to s이ve this problem. I In the SiOF ftlm, as fluorine concentration increases the dielectric constant of t뼈 film decreases but i it becomes unstable and wa않r absorptivity increases. The dielectric constant above 3.0 is obtain어 i in these ftlms. Fluoropolymers such as polyte$\sigma$따luoroethylene(PTFE) are known as low dielectric c constant (>2.0) materials. However, their $\alpha$)Or thermal stability and low adhesive fa$\pi$e have h hindered 야1리ru뚱 as IMD ma따"ials. 1 The concept of a plasma processing a찌Jaratus with 비gh density plasma at low pressure has r received much attention for deposition because films made in these plasma reactors have many a advantages such as go여 film quality and gap filling profile. High ion flux with low ion energy in m the high density plasma make the low contamination and go어 $\sigma$'Oss피lked ftlm. Especially the h helicon plasma reactor have attractive features for ftlm deposition 야~au똥 of i앙 high density plasma p production compared with other conventional type plasma soun:es. I In this pa야Jr, we present the results on the low dielectric constant fluorocarbonated-SiOF film d밑JOsited on p-Si(loo) 5 inch silicon substrates with 00% of 0dFTES gas mixture and 20% of Ar g gas in a helicon plasma reactor. High density 띠asma is generated in the conventional helicon p plasma soun:e with Nagoya type ill antenna, 5-15 MHz and 1 kW RF power, 700 Gauss of m magnetic field, and 1.5 mTorr of pressure. The electron density and temperature of the 0dFTES d discharge are measUI벼 by Langmuir probe. The relative density of radicals are measured by optic허 e emission spe따'Oscopy(OES). Chemical bonding structure 3I피 atomic concentration 따'C characterized u using fourier transform infrared(FTIR) s야3띠"Oscopy and X -ray photonelectron spl:’따'Oscopy (XPS). D Dielectric constant is measured using a metal insulator semiconductor (MIS;AVO.4 $\mu$ m thick f fIlmlp-SD s$\sigma$ucture. A chemical stoichiome$\sigma$y of 야Ie fluorocarbina$textsc{k}$영-SiOF film 따~si야영 at room temperature, which t the flow rate of Oz and FTES gas is Isccm and 6sccm, res야~tvely, is form려 야Ie SiouFo.36Co.14. A d dielec$\sigma$ic constant of this fIlm is 2.8, but the s$\alpha$'!Cimen at annealed 5OOt: is obtain려 3.24, and the s stepcoverage in the 0.4 $\mu$ m and 0.5 $\mu$ m pattern 킹'C above 92% and 91% without void, res야~tively. res야~tively.

  • PDF

Fabrication of a Silicon Hall Sensor for High-temperature Applications (고온용 실리콘 홀 센서의 제작)

  • 정귀상;류지구
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.6
    • /
    • pp.514-519
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$as a dielectrical isolation layer a SDB SOI Hall sensor without pn junction has been fabricated on the Si/ $SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to 30$0^{\circ}C$ the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than $\pm$6.7$\times$10$_{-3}$ and $\pm$8.2$\times$10$_{-4}$$^{\circ}C$ respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and high-temperature operation.

  • PDF

Fabrication of a Silicon Hall Sensor for High-temperature Applications (고온용 실리콘 홀 센서의 제작)

  • Chung, Gwiy-Sang;Ryu, Ji-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.05b
    • /
    • pp.29-33
    • /
    • 2000
  • This paper describes on the temperature characteristics of a SDB(silicon-wafer direct bonding) SOI(silicon-on-insulator) Hall sensor. Using the buried oxide $SiO_2$ as a dielectrical isolation layer, a SDB SOI Hall sensor without pn junction isolation has been fabricated on the Si/$SiO_2$/Si structure. The Hall voltage and the sensitivity of the implemented SOI Hall sensor show good linearity with respect to the applied magnetic flux density and supplied current. In the temperature range of 25 to $300^{\circ}C$, the shifts of TCO(temperature coefficient of the offset voltage) and TCS(temperature coefficient of the product sensitivity) are less than ${\pm}6.7{\times}10^{-3}/^{\circ}C$ and ${\pm}8.2{\times}10^{-4}/^{\circ}C$, respectively. These results indicate that the SDB SOI structure has potential for the development of a silicon Hall sensor with a high-sensitivity and high-temperature operation.

  • PDF

Study on the shape design of field coil in HTS generator considering stress condition

  • Jo, Young-Sik;Lee, Ju-Min;Hong, Jung-Pyo;Lee, Ju;Sohn, Myung-Hwan;Kwon, Young-Kil;Ryu, Kang-Sik
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.257-261
    • /
    • 2000
  • The value of I$_c$(critical current) in HTS (High Temperature Superconductor) tape has a great influence on B${\bot}$(vertical field). Therefore, in shape design of field coil for the HTSG(High Temperature Superconducting Generator), a method to reduce the B${\bot}$ should be considered in order to maintain the stability and substantial improvement on the performance. On the basis of the magnetic field analysis, this paper deals with various field coil shape according to the iron plate to obtain small B${\bot}$ by using Biot-Savart's law, image method and 2D FEA(2 Dimensional Finite Element Analysis) considering the stress condition of HTS. Moreover, the analysis is verified by comparison with experimental results. And also this paper presents the advanced model by using 3D FEA, in which flux density at armature is calculated in 5kVA class HTSG.

  • PDF