• 제목/요약/키워드: high intensity electric field

검색결과 73건 처리시간 0.027초

임펄스전압에 의한 토양이온화 현상의 분석 (Analysis of Ionization Phenomena in Soils under Impulse Voltages)

  • 박건훈;김회구;최종혁;양순만;이복희
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2008년도 춘계학술대회 논문집
    • /
    • pp.305-308
    • /
    • 2008
  • This paper presents characteristics of soil ionization when high currents such as lightning and switching surge currents are injected into a grounding rod. Soil ionization phenomena are investigated by using both voltage and current signals recorded by oscilloscope. As a result, a critical electric field intensity($E_C$) for ionization is decreased with reduction of grain size. The pre-ionization resistance($R_1$) and post-ionization resistance($R_2$) at the sand with fine grain size are getting lower with increasing current magnitude. Finally, the time to ionization($t_1$) and ionization current peak($t_2$) of fine grain size are significantly shorter than those of medium grain size.

  • PDF

Measurement of Multimode Fiber Bandwidth by the Fourth-Order Spectra of Amplified Spontaneous Emission

  • Moon, Sucbei;Kim, Dug Young
    • Journal of the Optical Society of Korea
    • /
    • 제18권1호
    • /
    • pp.15-22
    • /
    • 2014
  • We present a novel bandwidth measurement scheme for multimode optical fibers. Amplified spontaneous emission (ASE) radiation was utilized for a source of intrinsically modulated light with a wide modulation bandwidth. In our measurement scheme, the continuous-wave (CW) ASE light that passed through a multimode fiber (MMF) under test was analyzed by the fourth-order power with a high-speed photodetector and an electric spectrum analyzer. The modulation transfer function of the multimode fiber could be directly measured with the photoelectric spectra in the modulation frequency domain. The measurement result of our method was experimentally compared to that of the conventional measurement scheme based on the impulse response measurement. It has been found that our scheme provides a stable measurement means of MMF characterization that is suitable for the field testing due to the simplicity of the system.

AC/DC 하이브리드 선로의 전기환경특성 예측을 위한 축소모델 개발 (A Development of Reduced-scale Model to Predict of Environmental Characteristics of AC/DC Hybrid Overhead Transmission Line)

  • 최인혁;신구용;이동일;임재섭;김영홍;맹종호;주문노
    • 전기학회논문지
    • /
    • 제61권5호
    • /
    • pp.676-682
    • /
    • 2012
  • To review application of HVDC (High Voltage Direct Current) transmission line to HVAC T/L in operation, reduced-scale model was designed and manufactured. The arms of model were designed to change height and interval of conductors. Electrical environmental interferences were estimated by various configuration of AC 345kV and DC 250kV T/L. The interferences such as electric field intensity and ion current density were measured and converted reduced-scale factor to full-scaled. Additionally, effects between AC and DC T/L were studied.

Charging Behavior of Chopped Carbon Fibers under High Intensity Electric Fields

  • Park, Min;Kim, Junkyung;Lim, Soon-Ho;Ko, Moon-Bae;Choe, Chul-Rim
    • Macromolecular Research
    • /
    • 제8권1호
    • /
    • pp.6-11
    • /
    • 2000
  • In this study, we examined the charging behavior of chopped carbon fibers during electro-flocking process, which is one of the key processes of the novel technique for fabricating conductive polymer composite films. Short carbon fibers (CF) during electroflocking were electrically charged by the combined effect of contact charging, corona charging and tribocharging. The specific charge built on CF surface was measured by using Faraday cup method. Specific charge increased not only with increasing electric field strength and potential impressed to mesh electrode as expected from theoretical considerations in literature, but with decreasing mesh opening size due to the improved contact charging condition. However, CF length was found unexpectedly to influence the amount of CF specific charge due to the agglomerated nature of CF flocks leading to the change in charging conditions.

  • PDF

자동제어식 파종조절장치 개발 (Development of Automatic Seed Metering Device)

  • 이용국;이대원;오영진
    • Journal of Biosystems Engineering
    • /
    • 제19권2호
    • /
    • pp.91-98
    • /
    • 1994
  • Planting, transplanting, and harvesting are important processes for the successful production of farm products in Korea because those require the high labor intensity during limitted period. Recently, many researches of using automatic control with a microcomputer are carried in the agricultural field, but are not much spread to the seeder development. Automatic sowing technology would be much attractive if there was a way to assure that each seed was count accurately in the seed metering device. Thus, an automatic seed metering device was designed and constructed to be controlled by microcomputer. This device could be improved in not only counting the number of seeds in but also sowing seeds between row spacings. Automatic seed metering device consisted of conveyor belt and temporary storage device. Performance of seed metering device depends on the apparatus including sensor, stepping motor and DC-solenoid. Research contents and results are summarized as follows. 1. The seed metering device involving seed hopper, sorter and temporary storage device was designed and constructed. 2. A seed counting system with six photo electric sensors, designed and built for this project, was adequate for tranferring and counting seeds accurately. 3. Operating algorithm for stepping motor and photo electric DC-solenoid was developed. The Seed metering device proved to be a smooth and accurate operating device using the algorithm. 4. The performance of second prototype metering device was examined with five kinds of seeds ; mung beans, red beans, white beans, black beans and corn to transfer and count the seeds. The error ratio of seed metering was less than 3.5%.

  • PDF

고전압 Exponential Decay Pulse를 이용한 당근주스의 비열(非熱) 살균 (Non-thermal Pasteurization of Carrot Juice by High Voltage Pulsed Electric Fields with Exponential Decay Pulse)

  • 하구용;신정규;이석훈;조형용;변유량
    • 한국식품과학회지
    • /
    • 제31권6호
    • /
    • pp.1577-1582
    • /
    • 1999
  • 자체 제작한 고전압 펄스 전기장 장치를 이용하여 당근주스의 주요 변패 미생물인 대장균(Escherichia coli)의 불활성에 미치는 전기장 세기, 처리시간, 온도 등을 관찰하고 품질변화에 관하여 연구하였다. E. coli의 불활성에 필요한 최소 전기장세기인 임계전기장 세기(Ec)는 11.74 kV/cm, 최소처리시간(tc)는 $3.6{\mu}s$이었다. 사멸효과는 전기장의 세기가 클수록, 처리시간이 길수록 그리고 처리온도가 높을수록 증가하였다. 당근주스의 pH, 가용성 고형분 $(^{\circ}Brix)$, 적정산도는 거의 변화가 없었다. 색도는 50^{\circ}$ 열병합 PEF처리 주스만이 약간 감소하는 경향을 보였지만 다른 처리구들은 변화가 거의 없었다. ${\alpha},\;{\beta}-carotene$의 함량도 거의 변화가 없었다.

  • PDF

Comparative Study on the Runoff Process of Granite Drainage Basins in Korea and Mongolia

  • Tanaka, Yukiya;Matsukura, Yukinori
    • 한국제4기학회지
    • /
    • 제17권2호
    • /
    • pp.79-84
    • /
    • 2003
  • This study revealed the differences in runoff processes of granite drainage basins in Korea and Mongolia by hydrological measurements in the field. The experimental drainage basins are chosen in Korea (K-basin) and Mongolia (M-basin). Occurrence of intermittent flow in K-basin possibly implies that very quick discharge dominates. The very high runoff coefficient implies that most of effective rainfall quickly discharge by throughflow or pipeflow. The Hortonian overlandflow is thought to almost not occur because of high infiltration capacity originated by coarse grain sized soils of K- basin. Very little baseflow and high runoff coefficient also suggest that rainfall almost does not infiltrate into bedrocks in K-basin. Flood runoff coefficient in M-basin shows less than 1 %. This means that most of rainfall infiltrates or evaporates in M-basin. Runoff characteristics of constant and gradually increasing discharge imply that most of rainfall infiltrates into joint planes of bedrock and flow out from spring very slowly. The hydrograph peaks are sharp and their recession limbs steep. Very short time flood with less than 1-hour lag time in M-basin means that overland flow occurs only associating with rainfall intensity of more than 10 mm/hr. When peak lag time shows less than 1 hour for the size of drainage area of 1 to 10 km2, Hortonian overland flow causes peak discharge (Jones, 1997). The results of electric conductivity suggest that residence time in soils or weathered mantles of M-basin is longer than that of K-basin. Qucik discharge caused by throughflow and pipeflow occurs dominantly in K-basin, whereas baseflow more dominantly occur than quick discharge in M-basin. Quick discharge caused by Hortonian overlandflow only associating with rainfall intensity of more than 10 mm/hr in M-basin.

  • PDF

핀이 부착된 와이어형 방전극의 형상에 따른 코로나 방전특성에 대한 연구 (Experimental Study on the Corona Discharge Characteristics of the Pin-plate Electrode Geometries)

  • 정성일;이재근;정동규;안영철
    • 대한기계학회논문집B
    • /
    • 제30권2호
    • /
    • pp.95-100
    • /
    • 2006
  • Electrostatic precipitators(EPs) have low pressure drop and high dust collection efficiency and are widely used for industrial dust collectors. The current-voltage characteristics, which are important to maintain high dust collection efficiency, depend on several factor: discharge electrode shape, gas flow property, dust loading etc. In this study, experiments are performed to investigate the current-voltage characteristics of the corona discharge of various electrode geometries and an empirical model is proposed to predict current-voltage characteristics of the corona discharge. The corona onset voltage correction coefficient$(\alpha)$ and the geometry correction coefficient$(k_g)$ are used to the conventional equation for wire-plate type discharge electrode. The corona onset voltages are -6.3kV and almost constant when the numbers of discharge pins are varied from 3 to 9. The length of discharge pins has very sensitive effects on the corona onset voltage. They are increased from -6.3 to -7.8kV when the discharge pin length are 8.5 and 4.5mm, respectively. The empirical model shows good agreement with experimental results and can predict the effects of discharge pin length and number.

마이크로파가 인가된 화염에서의 화염안정성 및 오염물질 배출특성 (Characteristics of the Microwave Induced Flames on the Stability and Pollutant Emissions)

  • 전영훈;이의주
    • 한국안전학회지
    • /
    • 제29권4호
    • /
    • pp.23-27
    • /
    • 2014
  • The use of electromagnetic energy and non-equilibrium plasma for enhancing ignition and combustion stability is receiving increased attention recently. The conventional technologies have adapted the electrical devices to make the electromagnetic field, which resulted in various safety issues such as high-maintenance, additional high-cost system, electric shock and explosion. Therefore, an electrodeless microwave technology has an advantage for economic and reliability compared with conventional one because of no oxidation. However, the application of microwave has been still limited because of lack of interaction mechanism between flame and microwave. In this study, an experiment was performed with jet diffusion flames induced by microwaves to clarify the effect of microwave on the combustion stability and pollutant emissions. The results show that microwave induced flames enhanced the flame stability and blowout limit because of abundance of radical pool. However, NOx emission was increased monotonically with microwave intensity except 0.2 kW, and soot emission was reduced at the post flame region.

뇌자기자극을 이용한 운동신경계의 신경생리학적 평가 (Neurophysiological Evaluation of the Motor System Using Transcranial Magnetic Stimulation)

  • 신혜원;손영호
    • Annals of Clinical Neurophysiology
    • /
    • 제13권1호
    • /
    • pp.1-12
    • /
    • 2011
  • Transcranial magnetic stimulation (TMS) is a non-invasive tool used to study aspects of human brain physiology, including motor function and the pathophysiology of various brain disorders. A brief electric current passed through a magnetic coil produces a high-intensity magnetic field, which can excite or inhibit the cerebral cortex. Although various brain regions can be evaluated by TMS, most studies have focused on the motor cortex where motor evoked potentials (MEPs) are produced. Single-pulse and paired-pulse TMS can be used to measure the excitability of the motor cortex via various parameters, while repetitive TMS induces cortical plasticity via long-term potentiation or long-term depression-like mechanisms. Therefore, TMS is useful in the evaluation of physiological mechanisms of various neurological diseases, including movement disorders and epilepsy. In addition, it has diagnostic utility in spinal cord diseases, amyotrophic lateral sclerosis and demyelinating diseases. The therapeutic effects of repetitive TMS on stroke, Parkinson disease and focal hand dystonia are limited since the duration and clinical benefits seem to be temporary. New TMS techniques, which may improve clinical utility, are being developed to enhance clinical utilities in various neurological diseases.