• Title/Summary/Keyword: high energy physics

Search Result 745, Processing Time 0.024 seconds

THE KOMPSAT- I PAYLOADS OVERVIEW

  • Paik, Hong-Yul;Park, Gi-Hyuk;Youn, Hyeong-Sik;Lee, Seunghoon;Woo, Sun-Hee;Shim, Hyung-Sik;Oh, Kyoung-Hwan;Cho, Young-Min;Yong, Sang-Soon;Lee, Sang-Gyu;Heo, Haeng-Pal
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.301-306
    • /
    • 1998
  • Korea Aerospace Research Institute (KARI) is developing a Korea Multi-Purpose Satellite I (KOMPSAT-I) which accommodates Electro-Optical Camera (EOC), Ocean Scanning Multi-spectral Imager (OSMI), and Space Physics Sensor (SPS). The satellite has the weight of about 500kg and will be operated on the 10:50 AM sun-synchronized orbit with the altitude of 685 km. The satellite will be launched in 1999 and its lifetime is expected to be over 3 years. The main mission of EOC is the cartography to provide the images from a remote earth view for the production of 1/25000-scale maps of KOREA. EOC collects 510 ~ 730 nm panchromatic imagery with the ground sample distance(GSD) of 6.6 m and the swath width of 17 km by push broom scanning. EOC also can scan $\pm$45 degree across the ground track using body pointing method. The primary mission of OSMI is worldwide ocean color monitoring for the study of biological oceanography. It will generate 6 band ocean color images with 800 km swath width and 1km GSD by whiskbroom scanning. OSMI is designed to provide on-orbit spectral band selectability in the spectral range from 400 nm to 900 nm through ground command. This flexibility in band selection can be used for various applications and will provide research opportunities to support the next generation sensor design. SPS consists of High Energy Particle Detector (HEPD) and ionosphere Measurement Sensor (IMS). HEPD has missions to characterize the low altitude high-energy Particle environment and to study the effects of radiation environment on microelectronics. IMS measures densities and temperature of electrons in the ionosphere and monitors the ionospheric irregularities at the KOMPSAT orbit.

  • PDF

Application of CUPID for subchannel-scale thermal-hydraulic analysis of pressurized water reactor core under single-phase conditions

  • Yoon, Seok Jong;Kim, Seul Been;Park, Goon Cherl;Yoon, Han Young;Cho, Hyoung Kyu
    • Nuclear Engineering and Technology
    • /
    • v.50 no.1
    • /
    • pp.54-67
    • /
    • 2018
  • There have been recent efforts to establish methods for high-fidelity and multi-physics simulation with coupled thermal-hydraulic (T/H) and neutronics codes for the entire core of a light water reactor under accident conditions. Considering the computing power necessary for a pin-by-pin analysis of the entire core, subchannel-scale T/H analysis is considered appropriate to achieve acceptable accuracy in an optimal computational time. In the present study, the applicability of in-house code CUPID of the Korea Atomic Energy Research Institute was extended to the subchannel-scale T/H analysis. CUPID is a component-scale T/H analysis code, which uses three-dimensional two-fluid models with various closure models and incorporates a highly parallelized numerical solver. In this study, key models required for a subchannel-scale T/H analysis were implemented in CUPID. Afterward, the code was validated against four subchannel experiments under unheated and heated single-phase incompressible flow conditions. Thereafter, a subchannel-scale T/H analysis of the entire core for an Advanced Power Reactor 1400 reactor core was carried out. For the high-fidelity simulation, detailed geometrical features and individual rod power distributions were considered in this demonstration. In this study, CUPID shows its capability of reproducing key phenomena in a subchannel and dealing with the subchannel-scale whole core T/H analysis.

Improving the brittle behavior of high-strength shielding concrete blended with lead oxide, bismuth oxide, and tungsten oxide nanoparticles against gamma ray

  • Mohamed Amin;Ahmad A. Hakamy;Abdullah M. Zeyad;Bassam A. Tayeh;Ibrahim Saad Agwa
    • Structural Engineering and Mechanics
    • /
    • v.85 no.1
    • /
    • pp.29-53
    • /
    • 2023
  • High-strength shielding concrete against gamma radiation is a priority for many medical and industrial facilities. This paper aimed to investigate the gamma-ray shielding properties of high-strength hematite concrete mixed with silica fume (SF) with nanoparticles of lead dioxide (PbO2), tungsten oxide (WO3), and bismuth oxide (Bi2O3). The effect of mixing steel fibres with the aforementioned binders was also investigated. The reference mixture was prepared for high-strength concrete (HSCC) containing 100% hematite coarse and fine aggregate. Thirteen mixtures containing 5% SF and nanoparticles of PbO2, WO3, and Bi2O3 (2%, 5%, and 7% of the cement mass, respectively) were prepared. Steel fibres were added at a volume ratio of 0.28% of the volume of concrete with 5% of nanoparticles. The slump test was conducted to workability of fresh concrete Unit weight water permeability, compressive strength, splitting tensile strength, flexural strength, and modulus of elasticity tests were conducted to assess concrete's engineering properties at 28 days. Gamma-ray radiation of 137Cs emits photons with an energy of 662 keV, and that of 60Co emits two photons with energies of 1173 and 1332 keV were applied on concrete specimens to assess radiation shielding properties. Nanoparticles partially replacing cement reduced slump in workability of fresh concrete. The compressive strength of mixtures, including nanoparticles was shown to be greater, achieving 94.5 MPa for the mixture consisting of 7.5 PbO2. In contrast, the mixture (5PbO2-F) containing steel fibres achieved the highest values for splitting tensile, flexural strength, and modulus of elasticity (11.71, 15.97, and 42,840 MPa, respectively). High-strength shielded concrete (7.5PbO2) showed the best radiation protection. It also showed the minimum concrete thickness required to prevent the transmission of radiation.

A study on Performance Evaluation for Network Architecture using Quantum Key Distribution Technology (양자암호기반의 통신망 구축 및 성능시험 검증연구)

  • Lee, Wonhyuk;Seok, Woojin;Park, Chanjin;Kwon, Woochang;Sohn, Ilkwon;Kim, Seunghae;Park, Byoungyoen
    • KNOM Review
    • /
    • v.22 no.2
    • /
    • pp.39-47
    • /
    • 2019
  • There are several big data-driven advanced research activities such as meteorological climate information, high energy physics, astronomy research, satellite information data, and genomic research data on KREONET. Since the performance degradation occurs in the environment with the existing network security equipment, methods for preventing the performance degradation on the high-performance research-only network and for high-speed research collaboration are being studied. In addition, the recent issue of quantum computers has been a threat to security using the existing encryption system. In this paper, we construct quantum cryptography-based communication network through environment construction and high-performance transmission test that build physical security through quantum cryptography-based communication network in end-to-end high-speed research network. The purpose of this study is to analyze the effect on network performance when performing physical encryption and to use it as basic data for constructing high-performance research collaboration network.

Study on Absorbed Dose Determination of Electron Beam Quality for Cross-calibration with Plane-parallel Ionization Chamber (평행평판형이온함의 교차교정 시 전자선 선질에 따른 흡수선량 결정에 대한 연구)

  • Rah, Jeong-Eun;Shin, Dong-Oh;Park, So-Hyun;Jeong, Ho-Jin;Hwang, Ui-Jung;Ahn, Sung-Hwan;Lim, Young-Kyung;Kim, Dong-Wook;Yoon, Myong-Geun;Shin, Dong-Ho;Lee, Se-Byeong;Suh, Tae-Suk;Park, Sung-Yong
    • Progress in Medical Physics
    • /
    • v.20 no.2
    • /
    • pp.97-105
    • /
    • 2009
  • Absorbed dose to water based protocols recommended that plane-parallel chambers be calibrated against calibrated cylindrical chambers in a high energy electron beam with $R_{50}$>7 $g/cm^2$ (E${\gtrsim}$16 MeV). However, such high-energy electron beams are not available at all radiotherapy centers. In this study, we are compared the absorbed dose to water determined according to cross-calibration method in a high energy electron beam of 16 MeV and in electron beam energies of 12 MeV below the cross-calibration quality remark. Absorbed dose were performed for PTW 30013, Wellhofer FC65G Farmer type cylindrical chamber and for PTW 34001, Wellhofer PPC40 Roos type plane-parallel chamber. The cylindrical and the plane-parallel chamber to be calibrated are compared by alternately positioning each at reference depth, $Z_{ret}=0.6R_{50}-0.1$ in water phantom. The $D_W$ of plane-parallel chamber are derived using across-calibration method at high-energy electron beams of 16, 20 MeV. Then a good agreement is obtained the $D_W$ of plane-parallel chamber in 12 MeV. The agreement between 20 MeV and 12 MeV are within 0.2% for IAEA TRS-398.

  • PDF

Dose modeling and its Application of Ir-192 for substitution of Ralstron Brachytherapy source (Ralstron 선원대체형 Iridium-192 선원의 선량모델링과 응용)

  • 김옥배;최태진;김진희;이호준;박정호;김성규;조운갑;한현수
    • Progress in Medical Physics
    • /
    • v.11 no.2
    • /
    • pp.131-139
    • /
    • 2000
  • We designed high dose rate Ir-192 source which was prepared for substitute the Co-60 source in Ralstron unit (Simatsu, Japan) which is supplied for cervical cancer treatment. The source dimension is 1.5 mm in a diameter and 1.5mm thickness of cylinder and encapsulated with 3 mm diameter of stainless steel(SUS316L) to substituted for the Co-60 source size. The Ir-192 source was prepared the dose model for tissue dose computation through the experimental determination of apparent activity and applied the empirical tissue correction factors extended to 20cm distance. The tissue dose model was applied the 4.69 R/cm-mCi-hr gamma constant and the ratio of energy absorption coefficient of water to that of air showed 1.112 include filteration of the self-absorptions. In this experiments, we prepared the dose computation software to clinical usefulness.

  • PDF

Development of the EGS4 Control Code to Calculate the Dose Distributions in a Strong Magnetic Field (자기장이 인가된 물팬텀 속의 전자선 선량분포 계산을 위한 EGS4 제어코드의 개발과 응용)

  • 정동혁;오영기;신교철;김진기;김기환;김정기;이강규;문성록;김성규
    • Progress in Medical Physics
    • /
    • v.14 no.1
    • /
    • pp.1-7
    • /
    • 2003
  • In this work we developed a EGS4 control code to calculate the dose distributions for high energy electron beams in water phantom applied longitudinal magnetic field. We reviewed the electron's motion in magnetic field and delivered equations for direction changs of the electron by the external magnetic field. The mathematical results are inserted into the EGS4 code system to account for the presence of external magnetic fields in phantom. The electron pencil beam paths of 6 MeV in water phantom are calculated for magnetic fields of 1-3 T and the dose distributions for a field of 1.0 cm in diameter are calculated for magnetic fields of 0.6-1 T using the code. From the results of path calculations we found that the lateral ranges of the electrons are reduced in the magnetic field of 3 T. For a field of 1 cm diameter and a magnetic field of 1 T, the small dose enhancement near the range of the electrons on the depth dose and the penumbra reduction of 0.15 cm on the beam profile are observed. We discussed and evaluated the results from the theoretical concepts.

  • PDF

Optical properties of $YVO_{4}$ and Nd:$YVO_{4}$ single crystals grown by developed EFG method (Developed EFG법으로 성장시킨 $YVO_{4}$ 및 Nd:$YVO_{4}$ 단결정의 광학적 특성)

  • ;;M.A. Ivanov;V.V. Kochurikhin
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.11 no.4
    • /
    • pp.180-183
    • /
    • 2001
  • $YVO_{4}$ and Nd:$YVO_{4}$ single crystals have been grown developed Edge-defined film-fed growth (EFG) method and the crystals were measured on optical properties. $YVO_{4}$ and Nd:$YVO_{4}$ single crystal were transparent, high quality due to homogeneity of surface temperature of the melt and stability of meniscus during crystal growth. In transmittance and absorption spectra, Nd:$YVO_{4}$ single crystals had absorption peaks at wavelengths of 532, 593, 753, 808, 888 though $YVO_{4}$ single crystal had a broad transmittance at wavelength ranging from 340 to 1000nm. Also, Nd:$YVO_{4}$ single crystals had emissions of energy at range of 800~900 nm in photoluminescence (PL) spectrum.

  • PDF

[ $^{99m}Tc$ ] Generator Safety Simulation Based on GEANT4 (GEANT4를 이용한 $^{99m}Tc$ Generator 안전성 시뮬레이션)

  • Kang, Sang-Koo;Han, Dong-Hyun;Kim, Chong-Yeal
    • Progress in Medical Physics
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2008
  • Technisium $(^{99m}Tc)$ is one of the most widely used radioactive isotopes for diagnosis in nuclear medicine. In general, technisium is produced inside the so called $^{99m}Tc$ generator which is usually made out of lead to shield relatively high energy radiation from $^{99}Mo$ and its daughter nuclide $^{99m}Tc$. In this paper, a GEANT4 simulation is carried out to test the safety of the $^{99m}Tc$ generator, taking the Daiichi product with radioactivity of 500 mCi as an example. According to the domestic regulation on radiation safety, the dose at 10 cm and 100 cm away from the surface of shielding container should not exceed 2.0 mSv/h and 0.02 mSv/h, respectively. The simulated dose turned out to be less than the limit, satisfying the domestic regulation.

  • PDF

Guidelines of IRPA/ICNIRP for Non-ionizing Radiation (비이온화방사선에 대한 IRPA/ICNIRP의 제반지침)

  • Lee, Soo-Yong
    • Journal of Radiation Protection and Research
    • /
    • v.20 no.3
    • /
    • pp.143-154
    • /
    • 1995
  • In recent years, the development of new technologies using static magnetic fields has increased the possibility of human exposure to these fields and raised some concern as to their possible health effects. In several countries, governmental or other competent authorities have issued exposure limits that are mainly intended for specific uses, i.e., magnetic resonance imaging (MRI) and particle accelerators for high-energy Physics. Since applications of magnetic fields in industry and medicine are likely to grow in the future, thus increasing the possibility of occupational and general public exposure, and since the number of people with ferromagnetic implants and implanted electronic devices that can be affected by the fields is growing, there is a need for international guidelines. In the present papers, guidelines on limits of exposure to static magnetic fields are selected and discussed in order to review the guidelines of the International Non-ionizing Radiation Committee of the International Radiation Protection Association (IRPA/INIRC) for non-ionizing radiation(NIR)

  • PDF