• Title/Summary/Keyword: high energy physics

Search Result 745, Processing Time 0.028 seconds

Simulation of a Polarimeter for a Spin-Polarized Positron Beam

  • Kim, J.H.;Saito, F.;Suzuki, N.;Wei, L.;Nagashima, Y.;Kurihara, T.;Goto, A.;Itoh, Y.;Lee, Y.S.;Hyodo, T.
    • Journal of Korean Vacuum Science & Technology
    • /
    • v.6 no.3
    • /
    • pp.116-119
    • /
    • 2002
  • A performance of a new positron polarimeter is investigated by simulation using a charged-particle trajectory program. The results of the ray tracing are presented along with the details of the design parameters and projected system performance. A ray tracing analysis indicates that this design is capable of effectively transmitting positrons at beam energies varying from 0.1 to 30 keV within the beam diameter of 2-6mm. However, the observed reflection of the positrons(lower than 2 keV) at 12 kGauss indicated that further refinement of beam design is needed to produce a better positron polarimeter.

  • PDF

The Real-Time Temporal and Spatial Diagnostics of Ultrashort High-Power Laser Pulses using an All-Reflective Single-Shot Autocorrelator

  • Kim, Ha-Na;Park, Seong Hee;Kim, Kyung Nam;Han, Byungheon;Shin, Jae Sung;Lee, Kitae;Cha, Yong-Ho;Jang, Kyu-Ha;Jeon, Min Yong;Miginsky, Sergei V.;Jeong, Young Uk;Vinokurov, Nikolay A.
    • Journal of the Optical Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.382-387
    • /
    • 2014
  • An all-reflective, simple noncollinear second harmonic (SH) autocorrelator is described for monitoring the shot-to-shot behavior of ultrashort high-power laser pulses. Two mirrors are used for the dispersion-free splitting of a pulse into two halves. One of the mirrors is able to adjust the delay time and angle between two halves of the laser pulse in a nonlinear crystal. We present the possibility of real-time measurement of the pulse duration, peak intensity (or energy), and the pointing jitters of a laser pulse, by analyzing the spatial profile of the SH autocorrelation signal measured by a CCD camera. The measurement of the shot-to-shot variation of those parameters will be important for the detailed characterization of laser accelerated electrons or protons.

High quality topological insulator Bi2Se3 grown on h-BN using molecular beam epitaxy

  • Park, Joon Young;Lee, Gil-Ho;Jo, Janghyun;Cheng, Austin K.;Yoon, Hosang;Watanabe, Kenji;Taniguchi, Takashi;Kim, Miyoung;Kim, Philip;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.284-284
    • /
    • 2016
  • Topological insulator (TI) is a bulk-insulating material with topologically protected Dirac surface states in the band gap. In particular, $Bi_2Se_3$ attracted great attention as a model three-dimensional TI due to its simple electronic structure of the surface states in a relatively large band gap (~0.3 eV). However, experimental efforts using $Bi_2Se_3$ have been difficult due to the abundance of structural defects, which frequently results in the bulk conduction being dominant over the surface conduction in transport due to the bulk doping effects of the defect sites. One promising approach in avoiding this problem is to reduce the structural defects by heteroepitaxially grow $Bi_2Se_3$ on a substrate with a compatible lattice structure, while also preventing surface degradation by encapsulating the pristine interface between $Bi_2Se_3$ and the substrate in a clean growth environment. A particularly promising choice of substrate for the heteroepitaxial growth is hexagonal boron nitride (h-BN), which has the same two-dimensional (2D) van der Waals (vdW) layered structure and hexagonal lattice symmetry as $Bi_2Se_3$. Moreover, since h-BN is a dielectric insulator with a large bandgap energy of 5.97 eV and chemically inert surfaces, it is well suited as a substrate for high mobility electronic transport studies of vdW material systems. Here we report the heteroepitaxial growth and characterization of high quality topological insulator $Bi_2Se_3$ thin films prepared on h-BN layers. Especially, we used molecular beam epitaxy to achieve high quality TI thin films with extremely low defect concentrations and an ideal interface between the films and substrates. To optimize the morphology and microstructural quality of the films, a two-step growth was performed on h-BN layers transferred on transmission electron microscopy (TEM) compatible substrates. The resulting $Bi_2Se_3$ thin films were highly crystalline with atomically smooth terraces over a large area, and the $Bi_2Se_3$ and h-BN exhibited a clear heteroepitaxial relationship with an atomically abrupt and clean interface, as examined by high-resolution TEM. Magnetotransport characterizations revealed that this interface supports a high quality topological surface state devoid of bulk contribution, as evidenced by Hall, Shubnikov-de Haas, and weak anti-localization measurements. We believe that the experimental scheme demonstrated in this talk can serve as a promising method for the preparation of high quality TI thin films as well as many other heterostructures based on 2D vdW layered materials.

  • PDF

Characterization of zinc tin oxide thin films by UHV RF magnetron co-sputter deposition

  • Hong, Seunghwan;Oh, Gyujin;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.307.1-307.1
    • /
    • 2016
  • Amorphous zinc tin oxide (ZTO) thin films are being widely studied for a variety electronic applications such as the transparent conducting oxide (TCO) in the field of photoelectric elements and thin film transistors (TFTs). Thin film transistors (TFTs) with transparent amorphous oxide semiconductors (TAOS) represent a major advance in the field of thin film electronics. Examples of TAOS materials include zinc tin oxide (ZTO), indium gallium zinc oxide (IGZO), indium zinc oxide, and indium zinc tin oxide. Among them, ZTO has good optical and electrical properties (high transmittance and larger than 3eV band gap energy). Furthermore ZTO does not contain indium or gallium and is relatively inexpensive and non-toxic. In this study, ZTO thin films were formed by UHV RF magnetron co-sputter deposition on silicon substrates and sapphires. The films were deposited from ZnO and SnO2 target in an RF argon and oxygen plasma. The deposition condition of ZTO thin films were controlled by RF power and post anneal temperature using rapid thermal annealing (RTA). The deposited and annealed films were characterized by X-ray diffraction (XRD), atomic force microscope (AFM), ultraviolet and visible light (UV-VIS) spectrophotometer.

  • PDF

Performance Analysis of Two-Way Relay NOMA Systems with Hardware Impairments and Channel Estimation Errors

  • Tian, Xinji;Li, Qianqian;Li, Xingwang;Zhang, Hui;Rabie, Khaled;Cavalcante, Charles Casimiro
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5370-5393
    • /
    • 2019
  • In this paper, we consider a two-way relay non-orthogonal multiple access (TWR-NOMA) system with residual hardware impairments (RHIs) and channel estimation errors (CEEs), where two group users exchange their information via the decode-and-forward (DF) relay by using NOMA protocol. To evaluate the performance of the considered system, exact analytical expressions for the outage probability of the two groups users are derived in closed-form. Moreover, the asymptotic outage behavior in the high signal-to-noise ratio (SNR) regime is examined and the diversity order is derived and discussed. Numerical simulation results verify the accuracy of theoretical analyses, and show that: i) RHIs and CEEs have a deleterious effects on the outage probabilities; ii) CEEs have significant effects on the performance of the near user; iii) Due to the RHIs, CEEs, inter-group interference and intra-group interference, there exists error floors for the outage probability.

Combined X-ray CT-SPECT System with a CZT Detector

  • Kwon, Soo-Il;Koji Iwata;Hasegawa, B-H
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.379-381
    • /
    • 2002
  • A single CdZnTe detector is tested for suitability in a prototype CT/ SPECT system designed to acquire both emission and transmission data. The detector has the size of 1${\times}$l-cm$^2$ with 4${\times}$4 1.5${\times}$l.5mm$^2$ pixellated anodes. Since the detector is smaller than imaged object, we translated it in an arc centered at the x-ray tube to image larger objects. Pulse counting electronics with very short shaping time (50 ns) are used to satisfy high photon rates in x-ray imaging, and response linearity up to 3${\times}$10$\^$5/ counts per second per detector element is achieved. The energy resolution of 122-keV gamma-ray is measured to be 14%. We have characterized the system performance by scanning a radiographic resolution phantom .and the Hoffman brain phantom. The spatial resolution of CT and SPECT are about 1 mm and 7 mm, respectively.

  • PDF

The Evaluation of Multiplane-Parallel Chamber Using Crystal Plate as Ionization Medium for Therapeutic Radiation Beams

  • Young W. Vahc;Park, Kyung R.;Kim, Sookil;Chul W. Joh;Kim, Tae H.
    • Progress in Medical Physics
    • /
    • v.9 no.1
    • /
    • pp.29-35
    • /
    • 1998
  • There has been necessity of an air free ionization chamber using the gold-crystal-aluminium plates, henceforth called the crystal chamber. The crystal chamber formed of parallel plates is very small in size and has more response for absorbed dose of therapeutic radiation beams. The gold plate on the crystal facing the photon and electron beam acts as an intensifier of signals and crystal plate as an ionization medium respectively. Both the copper guard ring and the aluminum collecting electrode are connected to an electrometer. Using high energy photon (6, 15 MV) and electron (9, 12, 15, 18 MeV) beams, the responses of the crystal chamber are evaluated against a PTW Farmer-type chamber at a field size of 10${\times}$10cm$^2$ and 100 cm SSD. The responses of crystal chamber for therapeutic radiation electron and photon beams are greater in magnitude by several order than Farmer. The crystal chamber has good linearity without correction factor C$\_$t,p/ with respect to the signals, a reading reproduction with good accuracy and precision less than 0.5%, and has other useful functions in measuring radiation beams.

  • PDF

Synthesis and Quality of Cr-doped AIN Thin Films Grown by RF Sputtering

  • Quang, Pham Hong;Hung, Tran Quang;Dai, Ngo Xuan;Thanh, Tran Hoai;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.12 no.4
    • /
    • pp.149-151
    • /
    • 2007
  • The AlCrN films were grown by RF reactive sputtering method under the selected conditions. The Cr concentration was varied by the number of Cr pieces placed on the Al target. The sample quality has been studied by XRD, Auger spectroscopy, optical absorption and electrical resistant measurements. The XRD and Auger results show that the samples consist of a major phase with the $Al_{1-x}Cr_xN$ formula, which has a hexagonal structure, and a few percents at. of oxygen, which may form $Al_2O_3$. There exist the Cr clusters in the samples with high concentration of Cr. The optical absorption measurement provides the information about the band gap that relates strongly to the quality of samples. The quality of samples is also clearly reflected in electrical measurement, i.e., the temperature dependence of resistance exhibits a semiconductor characteristic only for the samples that have no Cr cluster. In these cases, the values of ionization energies $E_a$ can be derived from R(T) plots by using the function R(T) = Ro exp $(E_a/k_BT)$.

Novel Punch-through Diode Triggered SCR for Low Voltage ESD Protection Applications

  • Bouangeune, Daoheung;Vilathong, Sengchanh;Cho, Deok-Ho;Shim, Kyu-Hwan;Leem, See-Jong;Choi, Chel-Jong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.6
    • /
    • pp.797-801
    • /
    • 2014
  • This research presented the concept of employing the punch-through diode triggered SCRs (PTTSCR) for low voltage ESD applications such as transient voltage suppression (TVS) devices. In order to demonstrate the better electrical properties, various traditional ESD protection devices, including a silicon controlled rectifier (SCR) and Zener diode, were simulated and analyzed by using the TCAD simulation software. The simulation result demonstrates that the novel PTTSCR device has better performance in responding to ESD properties, including DC dynamic resistance and capacitance, compared to SCR and Zener diode. Furthermore, the proposed PTTSCR device has a low reverse leakage current that is below $10^{-12}$ A, a low capacitance of $0.07fF/mm^2$, and low triggering voltage of 8.5 V at $5.6{\times}10^{-5}$ A. The typical properties couple with the holding voltage of 4.8 V, while the novel PTTSCR device is compatible for protecting the low voltage, high speed ESD protection applications. It proves to be good candidates as ultra-low capacitance TVS devices.

Efficiency calibration and coincidence summing correction for a NaI(Tl) spherical detector

  • Noureddine, Salam F.;Abbas, Mahmoud I.;Badawi, Mohamed S.
    • Nuclear Engineering and Technology
    • /
    • v.53 no.10
    • /
    • pp.3421-3430
    • /
    • 2021
  • Spherical NaI(Tl) detectors are used in gamma-ray spectrometry, where the gamma emissions come from the nuclei with energies in the range from a few keV up to 10 MeV. A spherical detector is aimed to give a good response to photons, which depends on their direction of travel concerning the detector center. Some distortions in the response of a gamma-ray detector with a different geometry can occur because of the non-uniform position of the source from the detector surface. The present work describes the calibration of a NaI(Tl) spherical detector using both an experimental technique and a numerical simulation method (NSM). The NSM is based on an efficiency transfer method (ETM, calculating the effective solid angle, the total efficiency, and the full-energy peak efficiency). Besides, there is a high probability for a source-to-detector distance less than 15 cm to have pulse coincidence summing (CS), which may occur when two successive photons of different energies from the same source are detected within a very short response time. Therefore, γ-γ ray CS factors are calculated numerically for a 152Eu radioactive cylindrical source. The CS factors obtained are applied to correct the measured efficiency values for the radioactive volumetric source at different energies. The results show a good agreement between the NSM and the experimental values (after correction with the CS factors).