• 제목/요약/키워드: high density composite

검색결과 497건 처리시간 0.028초

고밀 주거환경에서의 사회적 소통을 위한 계획 방향 연구 (A Study on the Planning Direction for Social Communication in a High-density Residential Environment)

  • 이재영;전용한
    • 대한안전경영과학회지
    • /
    • 제24권1호
    • /
    • pp.73-80
    • /
    • 2022
  • The purpose of this study is to present the direction of the plan to transform the residential complex into a space that can provide an open residential environment that can lead to social communication and exchange without being closed to the urban residential environment, especially in the apartment complex environment, which is becoming more dense. As a result of the Openness analysis of the 'Codan Shinonome Canal Court', the overall accessibility was good in terms of space utilization, and the openness was low in terms of the spatial composition, which is a physical environment due to the dense block type. When looking at the overall openness of the Codan Sinonome complex in terms of analysis by block, the corrected openness index (C.O.I) for all six blocks was 0.245, the corrected accessibility index (C.A.I) was 1.447 and the openness composite index (O.C.I) was assessed at 1.692. This was due to the formation of high-density block-type urban dwellings and the introduction of S-shaped streets and the layout of low-rise urban support facilities and commercial facilities. The Codan Sinonome Canal Court, which is considered an "open city residence," quantitatively confirmed that it embodies macro-space structure and human-scale space environment even in high-precision environments.

급속 소결에 의한 인공관절용 나노구조 2/3 Cr-ZrO2 복합재료 제조 및 특성 (Properties and Fabrication of Nanostructured 2/3 Cr-ZrO2 Composite for Artificial Joint by Rapid Sinerting)

  • 강현수;강보람;손인진
    • 한국재료학회지
    • /
    • 제24권9호
    • /
    • pp.495-501
    • /
    • 2014
  • Despite having many attractive properties, $ZrO_2$ ceramic has a low fracture toughness which limits its wide application. One of the most obvious tactics to improve its mechanical properties has been to add a reinforcing agent to formulate a nanostructured composite material. Nanopowders of $ZrO_2$ and Cr were synthesized from $CrO_3$ and Zr powder by high energy ball milling for 10 h. Dense nanocrystalline $2/3Cr-ZrO_2$ composite was consolidated by a high-frequency induction heated sintering method within 5 min at $600^{\circ}C$ from mechanically synthesized powder. The method was found to enable not only rapid densification but also the inhibition of grain growth, preserving the nano-scale microstructure. Highly dense $2/3Cr-ZrO_2$ composite with relative density of up to 99.5% was produced under simultaneous application of a 1 GPa pressure and the induced current. The hardness and fracture toughness of the composite were 534 kg/mm2 and $7MPa{\cdot}m1/2$, respectively. The composite was determined to have good biocompatibility.

Electrochemical characterization of activated carbon-sulfur composite electrode in organic electrolyte solution

  • Kim, Dongyoung;Park, Soo-Jin;Jung, Yongju;Kim, Seok
    • Carbon letters
    • /
    • 제14권2호
    • /
    • pp.126-130
    • /
    • 2013
  • In this study, we present a more electrochemically enhanced electrode using activated carbon (AC)-sulfur (S) composite materials, which have high current density. The morphological and micro-structure properties were investigated by transmission electron microscopy. Quantity of sulfur was measured by thermogravimetric analysis analysis. The electrochemical behaviors were investigated by cyclic voltammetry. As a trapping carbon structure, AC could provide a porous structure for containing sulfur. We were able to confirm that the AC-S composite electrode had superior electrochemical activity.

반응소결 SiC-graphite 복합체의 마찰마모특성 (Tribological Properties of Raction-Bonded SiC-Graphite Composites)

  • 백용혁;신종윤;곽효섭;박용갑
    • 한국세라믹학회지
    • /
    • 제33권5호
    • /
    • pp.479-484
    • /
    • 1996
  • The tribological properties of ceramics are very important in the application to engineering ceramic parts such as mechanical seal slurry valve disc and so on. In this study the effect of graphite addition on the mechanical and tribological properties of RBSC/graphite composites were investigated. The composites were prepared by adding graphite powder to the mixture of SiC powder metallic siliconcarbon black and alumina. Bending strength water absorption friction coefficient the amount of worn out material at a certain time and maximum surface roughness(Rmax) of the prepared composites were measured and crystalline phases were examined with XRD. The composite containing 5 vol% graphite powder showed improved bending strength due to high green density and decreased friction coefficient and wear resistance. The friction coefficient and the wear resistance of the composite were increased by adding graphite powder up to 10 vol% They decreased however as increasing the amount of graphite powder more that 10vol% There was no linear relationship between the tribological properties and bending strength of the composites.

  • PDF

건물 외장재 적용을 위한 3D 프린팅 시멘트 베이스 결합재 개발 (Development of 3D Printing Cement Based Composite Materials Applying for Exterior Finishing Material)

  • 신현욱;송훈
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2018년도 춘계 학술논문 발표대회
    • /
    • pp.83-84
    • /
    • 2018
  • 3D printing technology can be applied to various industries, and is trapped by major technologies that change existing manufacturing processes. 3D printing materials must satisfy designability, economy and productivity, and building materials are required to have strength and economy secured technology. 3D printing technology of construction field can be divided into structural materials and internal and external materials, and is mainly done by extruding and adapting. Particularly when it is applied as an exterior materials, it is mainly applied to an unstructured exterior materials and high accuracy is required. The exterior materials can be used as a cement composite materials, it is suitable also for a lamination type, and the role of a cement base bonding material is important. In this research, we developed a cementitious base binder applicable as a 3D printing exterior materials, confirmed density and strength characteristics for application as an exterior materials, a flame retardancy test for improving the fire resistance of buildings and confirmed its possibility.

  • PDF

Computational analysis of molecular dynamics results in a fuzzy stability system

  • C.C. Hung;T. Nguyen;C.Y. Hsieh
    • Advances in Computational Design
    • /
    • 제9권1호
    • /
    • pp.53-71
    • /
    • 2024
  • Owing to these mechanical properties, carbon nanotubes have the potential to be employed in many future devices and nanostructured materials. As an example, high Young modulus accompanied by their low density, makes them a good choice for reinforcing material in composites. Therefore, we empathize and manually derive the results which shows the utilized lemma and criterion are believed effective and efficient for aircraft structural analysis of composite and nonlinear scenarios. To be fair, the experiment by numerical computation and calculations were explained the perfectness of the methodology we provided in the research.

Silicon Carbide Coating on Graphite and Isotropic C/C Composite by Chemical Vapour Reaction

  • Manocha, L.M.;Patel, Bharat;Manocha, S.
    • Carbon letters
    • /
    • 제8권2호
    • /
    • pp.91-94
    • /
    • 2007
  • The application of Carbon and graphite based materials in unprotected environment is limited to a temperature of $450^{\circ}C$ or so because of their susceptibility to oxidation at this temperature and higher. To over come these obstacles a low cost chemical vapour reaction process (CVR) was developed to give crystalline and high purity SiC coating on graphite and isotropic C/C composite. CVR is most effective carbothermal reduction method for conversation of a few micron of carbon layer to SiC. In the CVR method, a sic conversation layer is formed by reaction between carbon and gaseous reagent silicon monoxide at high temperature. Characterization of SiC coating was carried out using SEM. The other properties studied were hardness density and conversion efficiency.

Experimental and microstructural evaluation on mechanical properties of sisal fibre reinforced bio-composites

  • Kumar, B. Ravi;Hariharan, S.S.
    • Steel and Composite Structures
    • /
    • 제33권2호
    • /
    • pp.299-306
    • /
    • 2019
  • The natural fibre composites are termed as bio-composites. They have shown a promising replacement to the current carbon/glass fibre reinforced composites as environmental friendly materials in specific applications. Natural fibre reinforced composites are potential materials for various engineering applications in automobile, railways, building and Aerospace industry. The natural fibre selected to fabricate the composite material is plant-based fibre e.g., sisal fibre. Sisal fibre is a suitable reinforcement for use in composites on account of its low density, high specific strength, and high hardness. Epoxy is a thermosetting polymer which is used as a resin in natural fibre reinforced composites. Hand lay-up technique was used to fabricate the composites by reinforcing sisal fibres into the epoxy matrix. Composites were prepared with the unidirectional alignment of sisal fibres. Test specimens with different fibre orientations were prepared. The fabricated composites were tested for mechanical properties. Impact test, tensile test, flexural test, hardness test, compression test, and thermal test of composites had been conducted to assess its suitability in industrial applications. Scanning electron microscopy (SEM) test revealed the microstructural information of the fractured surface of composites.

SiC입자강화 주조Al-Si복합재의 피로수명에 대한 인장평균변형률의 영향 (Tensile Mean Strain Effects on the Fatigue Life of SiC-Particulate-Reinforced Al-Si Cast Alloy Composites)

  • 고승기
    • 대한기계학회논문집A
    • /
    • 제23권11호
    • /
    • pp.1970-1981
    • /
    • 1999
  • The low-cycle fatigue behaviour of a SiC-particulate-reinforced Al-Si cast alloy with two different volume fractions has been investigated from a series of strain-control led fatigue tests with zero and nonzero tensile mean strains. The composites including the unreinforced matrix alloy, exhibited cyclic hardening behaviour, with more pronounced strain-hardening for the composites with a higher volume fraction of the SiC particles. For the tensile mean strain tests, the initial high tensile mean stress relaxed to zero for the ductile Al-Si alloy, resulting in no influence of the tensile mean strain on the fatigue life of the matrix alloy. However, tensile mean strain for the composite caused tensile mean stresses and reduced fatigue life. The pronounced effects of mean strain on the low-cycle fatigue life of the composite compared to the unreinforced matrix alloy were attributed to the initial large prestrain and non-relaxing high tensile mean stress in the composite with very limited ductility and Cyclic plasticity. Fatigue damage parameter using strain energy, density efficiently accounted for the mean stress effects. Predicted fatigue life using the damage parameter correlated fairly well with the experimental life within a factor of 3. Also, the fatigue damage parameter indicated the inferior life in the low-cycle regime and superior life in the high-cycle regime for the composite, compared to the unreinforced matrix alloy.

구리튜브를 피복재로 이용한 분말시스압연법에 의해 제조된 CNT/Al 복합재료의 미세조직 및 기계적 특성 (Microstructure and Mechanical Properties of CNT/Al Composite Fabricated by a Powder-in-Sheath Rolling Method utilizing Copper Tube as a Sheath)

  • 이성희
    • 한국분말재료학회지
    • /
    • 제21권5호
    • /
    • pp.343-348
    • /
    • 2014
  • A powder-in-sheath rolling (PSR) process utilizing a copper alloy tube was applied to a fabrication of a multi-walled carbon nanotube (CNT) reinforced aluminum matrix composite. A copper tube with an outer diameter of 30 mm and a wall thickness of 2 mm was used as a sheath material. A mixture of pure aluminum powders and CNTs with the volume contents of 1, 3, 5 vol% was filled in the tube by tap filling and then processed to 93.3% height reduction by a rolling mill. The relative density of the CNT/Al composite fabricated by the PSR decreased slightly with increasing of CNTs content, but showed high value more than 98%. The average hardness of the 5%CNT/Al composite increased more than 3 times, compared to that of unreinforced pure Al powder compaction. The hardness of the CNT/Al composites was some higher than that of the composites fabricated by PSR using SUS304 tube. Therefore, it is concluded that the type of tube affects largely on the mechanical properties of the CNT/Al composites in the PSR process.