• Title/Summary/Keyword: high cycle fatigue

Search Result 335, Processing Time 0.027 seconds

The Effects of Total Sleep Deprivation on Anxiety, Mood, Sleepiness and Fatigue (전수면박탈이 정상인의 불안, 기분, 졸리움 및 피로도에 미치는 영향)

  • Lee, Heon-Jeong;Kim, Leen;Joe, Sook-Haeng;Suh, Kwang-Yoon
    • Sleep Medicine and Psychophysiology
    • /
    • v.6 no.1
    • /
    • pp.76-84
    • /
    • 1999
  • Objectives: A number of studies have shown that sleep deprivation results in reduced vigilance and increased negative affects such as tension, depression and anger. However there are few studies about effects of sleep deprivation on anxiety. The purpose of this study was to investigate the effects of 40 hour sleep deprivation on state anxiety, affects, sleepiness and fatigue. The authors also intended to study the effect of trait-anxiety on these psychological variables after sleep deprivation. Methods: Twenty nine subjects(22 men, 7 women, $24.59{\pm}1.35$ years of age) participated in this study. Subjects had no past history of psychiatric disorders and physical illnesses, and had normal sleep-waking cycle without current sleep disturbances. All of the subjects completed sleep dairy for two weeks to exclude some who suffered from chronic sleep deprivation or sleep disturbances. Subjects were instructed to get a normal sleep as usual at night before the study. After awakening, subjects remained awake for 40 hours under continuous surveillance. They completed State-Trait Anxiety Inventory, Index of General Affect, Stanford Sleepiness Scale and Fatigue Questionnaire every three hours, therefore they completed the scales 14 times totally. Subjects were dictated not to take caffeine, alcohol, or any medications on the day of the study. Heavy exercises and naps were restricted too. Results: Sleep deprivation resulted in increased state anxiety, negative general affects, and increased sleepiness and fatigue(p<.001). Dividing into high trait-anxiety group and low trait-anxiety group, there was significant sleep deprivation x traitanxiety interaction effect on general affect(p<.05). But, there was no significant sleep deprivation x trait-anxiety interaction effect on state-anxiety, sleepiness and fatigue. During sleep deprivation, the highest ratings of scales on anxiety, negative affect, sleepiness and fatigue occurred between 4 : 00AM and 7 : 00AM. Conclusions: These results show that sleep deprivation results in increased anxiety, mood state disturbance and increment of sleepiness and fatigue. These findings also suggest that trait-anxiety is a factor that influences the degree of worsening in general affect caused by sleep deprivation. During sleep deprivation, the rating curves of anxiety, affect, sleepiness and fatigue show rhythmicity that may be related to circadian rhythm.

  • PDF

A Study on Wear and Wear Mechanism of Exhaust Valve and Seat Insert Depending on Different Speeds Using a Simulator

  • Hong, Jae-Soo;Chun, Keyoung-Jin;Youn, Young-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2052-2060
    • /
    • 2006
  • The wear of engine valve and seat insert is one of the most important factors which affect engine performance. Because of higher demands on performance and the increasing use of alternative fuel, engine valve and seat insert are challenged with greater wear problems than in the past. In order to solve the above problems, a simulator was developed to be able to generate and control high temperatures and various speeds during motion. The wear simulator is considered to be a valid simulation of the engine valve and seat insert wear process with various speeds during engine activity. This work focuses on the different degrees of wear at three different singular test speeds (10 Hz, 25 Hz & multi-Hz). For this study, the temperature of the outer surface of the seat insert was controlled at 350$^{\circ}C$, and the test load was 1960 N. The test cycle number was $6.0{\times}10^6$. The mean ($\pm$standard error) wear depth of the valve at 10 Hz and 25 Hz was 45.1 ($\pm$3.7)$\mu$m and 81.7 ($\pm$2.5)$\mu$m, respectively. The mean wear depth of the seat insert at 10 Hz and 25 Hz was 52.7 ($\pm$3.9)$\mu$m and 91.2 ($\pm$2.7)$\mu$m, respectively. In the case of multi-Hz it was 70.7 ($\pm$2.4)$\mu$m and 77.4 ($\pm$3.8)$\mu$m, respectively. It was found that higher speed (25 Hz) cause a greater degree of wear than lower speed (10 Hz) under identical test condition (temperature, valve displacement, cycle number and test load). In the wear mechanisms of valves, adhesive wear, shear strain and abrasive wear could be observed. Also, in the wear mechanisms of seat inserts, adhesive wear, surface fatigue wear and abrasive wear could be observed.

Seismic Characteristic Evaluation on Strip-type Damping Devices with Optimized Shape (최적 형상 스트립형 감쇠장치의 내진 특성 평가)

  • Hwang, Jung-Hyun;Ock, Jong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.6
    • /
    • pp.26-37
    • /
    • 2019
  • This paper aims to investigate the seismic characteristics of strip-type damping devices possessing optimized shapes for the moment-resisting mechanism throughout analytical and experimental studies. Predicting equations for initial stiffness and yielding strength were introduced and compared with analytical results obtained from finite element analyses (FEAs) using commercial FEA program ABAQUS. In order for establishing predicting equations, two idealized processes were considered and both predicting equations showed that they could provide enough approximations for seismic applications in building structures. Throughout experimental studies, it was noted that structural uncertainties on mild steels, connection details and structural types linking damping devices with building structures could interrupt predicting structural behavior of the devices. Also, it was observed that shear stress concentrations should be considered if shear yielding type devices are applied into building structures. Nevertheless, it was shown that structural conservatism can be established using the predicting equations and seismic applications of the damping devices can enhance the seismic performance of building structures efficiently in the viewpoint that they have high resistance to low-cycle fatigue failures.

Seismic Performance Evaluation on Bending Deformation of 2-Ply and 3-Ply Bellows Expansion Pipe Joints (2겹 및 3겹 벨로우즈 신축배관이음의 휨 변형에 대한 내진성능평가 )

  • Sung-Wan Kim;Sung-Jin Chang;Dong-Uk Park;Bub-Gyu Jeon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.2
    • /
    • pp.33-41
    • /
    • 2023
  • The application of seismic separation joints that can improve the deformation capacity of piping is an effective way to improve seismic performance. Seismic separation joints capable of axial expansion and bending deformation are installed where deformation is expected and used for the purpose of safely protecting the piping. Bellows are flexible and have low stiffness, so they can be used as seismic separation joints because they have excellent ability to respond to relatively large deformation. In this study, the seismic performance and limit state for bending deformation of 2-ply and 3-ply bellows specimens were evaluated. Seismic performance was evaluated by applying an increasing cyclic load to consider low-cycle fatigue due to seismic load. In order to confirm the margin for the limit state of the evaluated seismic performance, an experiment was conducted in which a cyclic loading of constant amplitude was applied. As a result of the experiment, it was confirmed that the bellows specimen was made of stainless steel and had a high elongation, so that the 2-ply bellows specimen had the limit performance of resisting within 3 cycles even at the maximum forced displacement of the 3-ply bellows specimen.

Endurance Capacity of the Biceps Brachii Muscle Using the High-to-Low Ratio between Two Signal Spectral Moments of Surface EMG Signals during Isotonic Contractions

  • Lee, Sang-Sik;Jang, Jee-Hun;Cho, Chang-Ok;Kim, Dong-Jun;Moon, Gun-Pil;Kim, Buom;Choi, Ahn-Ryul;Lee, Ki-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.4
    • /
    • pp.1641-1648
    • /
    • 2017
  • Many researchers had examined the validity of using the high-to-low ratio between two fixed frequency band amplitudes (H/L-FFB) from the surface electromyography of a face and body as the first spectral index to assess muscle fatigue. Despite these studies, the disadvantage of this index is the lack of a criterion for choosing the optimal border frequency. We tested the potential of using the high-to-low ratio between two signal spectral moments (H/L-SSM), without fixed border frequencies, to evaluate muscle fatigue and predict endurance time ($T_{end}$), which was determined when the subject was exhausted and could no longer follow the fixed contraction cycle. Ten healthy participants performed five sets of voluntary isotonic contractions until they could only produce 10% and 20% of their maximum voluntary contraction (MVC). The $T_{end}$ values for all participants were $138{\pm}35s$ at 10% MVC and $69{\pm}20s$ at 20% MVC. Changes in conventional spectral indices, such as the mean power frequency (MPF), Dimitrov spectral index (DSI), H/L-FFB, and H/L-SSM, were extracted from surface EMG signals and were monitored using the initial slope computed every 10% of $T_{end}$ as a statistical indicator and compared as a predictor of $T_{end}$. Significant correlations were found between $T_{end}$ and the initial H/L-SSM slope as computed over 30% of $T_{end}$. In conclusion, initial H/L-SSM slope can be used to describe changes in the spectral content of surface EMG signals and can be employed as a good predictor of $T_{end}$ compared to that of conventional spectral indices.

Risk Assessment Technique for Gas Fuel Supply System of Combined Cycle Power Plants (I) : Based on API RBI Procedures (복합화력발전의 가스연료 공급계통에 대한 위험도 평가 기법 연구 (I) : API RBI 절차에 기반한 위험도 평가)

  • Song, Jung Soo;Yu, Jong Min;Han, Seung Youn;Choi, Jeong Woo;Yoon, Kee Bong
    • Journal of Energy Engineering
    • /
    • v.27 no.2
    • /
    • pp.1-13
    • /
    • 2018
  • The proportion of natural gas-fueled power generation is expanding due to the change of domestic energy policy pursuing reduction of dust and increasing clean energy consumption. Natural gas fuels used for the combined-cycle power plants and the district-heating power plants are operated at high temperature and high pressure in the fuel supply system. Accidents due to leakage of the gas such as fire and explosion should be prevented by applying risk management techniques. In this study, risk assessment was performed on the natural gas fuel supply system of a combined power plant based on the API RP 581 RBI code. For the application of the API RBI code, lines and segments of the evaluation target system were identified. Operational data and input information were analyzed for the calculations of probability of failure and consequence of failure. The results of the risk assessment were analyzed over time from the initial installation time. In the code-based evaluation, the gas fuel supply system was mainly affected by thinning, external damage, and mechanical fatigue damage mechanisms. As the operating time passes, the risk is expected to increase due to the external damage caused by the CUI(Corrosion Under Insulation).

Hot ductility behavior of steel as low cycle high temperature fatigue (저주기 고온 피로에 따른 강의 열간 연성 거동)

  • 박병호;김현정;손광석;김동규
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.11a
    • /
    • pp.86-86
    • /
    • 2003
  • 주편은 1차 냉각 지역인 수냉 몰드를 통과한 후, 2차 냉각 지역에서 guide roll, pinch roll 그리고 driven roll등에 의해 반복적인 압축하중을 받고 있으며, roll과 roll사이에서는 철정압에 의한 주편 bulging 현상이 발생하고 주편의 표면은 인장응력을 받게 된다. 특히 연속주조 중 주편의 변형기구가 단순 탄소성 변형 이 아닌 creep에 의한 변형임을 고려할 때, 2차 냉각 지역에서 주편의 표면은 전술한 압축 및 인장변형 이 반복되는 저주기 고온 피로 환경을 거침을 알 수 있다. 본 연구에서는 탄소함량에 따른 주편의 bulging시의 크랙 발생에 미치는 저주기 고온 피로의 효과를 조사하였다. 또한, 용체화 처리 온도에서 시험 온도까지의 냉각 속도의 영향을 조사하기 위하여 1$^{\circ}C$/s 및 1$0^{\circ}C$/s로 냉각 속도를 변화시켜 열간 연성 곡선을 작성하였다. 본 연구에서 얻어진 결과는 다음과 같다. 저탄소강의 경우는 저주기 피로의 영향이 관찰되지 않았으며, 중탄소강의 경우, 저온에서는 저주기 피로로 인해 열간 연성이 증가하였으나, 고온에서는 변형유기 페라이트의 생성으로 인해 열간 연성 이 감소하였다. 고탄소강의 경우는 저주기 피로로 인하여 열간 연성이 모든 온도 구간에서 증가하였다. 또한 용체화 처리후 시험 온도까지의 냉각 속도가 감소함에 따라 열간 연성이 증가하였는데, 이는 입 계 석출물의 조대화로 인해 열간 연성이 증가하는 것으로 판단된다.

  • PDF

Fatigue Test of Aircraft Landing Gear (항공기 착륙장치 피로시험)

  • Lee, Sang-Wook;Lee, Seung-Gyu;Shin, Jeong-Woo;Kim, Tae-Uk;Kim, Sung-Chan;Hwang, In-Hee;Lee, Je-Dong
    • Proceedings of the KAIS Fall Conference
    • /
    • 2011.12b
    • /
    • pp.503-506
    • /
    • 2011
  • 항공기 착륙장치 피로 수명평가에는 안전 수명방법이 사용된다. 안전 수명방법은 항공기 전 수명기간을 모사하는 피로하중 스펙트럼 조건에서 균열 또는 유해한 변형과 같은 구조적 결함이 발생하지 않도록 설계/입증하는 것을 말한다. 설계 단계에서는 해석적 방법을 통해 착륙 및 지상운용하중을 구하고, 이를 착륙장치 피로해석에 적용하여 피로수명을 확인한다. 착륙장치는 수명 기간 중 일반적으로 High Cycle 피로를 겪게 되므로, 피로해석 시 응력 기반의 접근 방법이 적용된다. 시험평가 단계에서는 일반적으로 4배의 운용수명에 해당하는 피로하중 스펙트럼에 대해 시험을 수행하여, 착륙장치의 안전 수명을 최종 입증하게 된다. 이와 같이 항공기 착륙장치 피로 수명평가를 위해서는 착륙 및 지상운용 하중해석에서부터 피로해석, 피로시험에 이르기까지 전 과정이 유기적으로 결합되어 이루어져야 한다. 본 연구에서는 항공기 착륙장치 피로시험에 필요한 세부과정과 관련 기술을 실제 적용 사례와 함께 기술하였다.

  • PDF

Theoretical Study of Design Parameters for the Thermal Stress in Engine Exhaust Manifold (엔진 배기매니폴드의 열응력 발생에 관한 설계 인자들의 이론적 연구)

  • Choi, Bok-Lok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Exhaust manifold is generally subjected to thermal cycle loadings ; at hot condition, large compressive plastic deformations are generated, and at cold condition, tensile stresses are remained in highly deformed critical zones. These phenomena originate from the fact that thermal expansions of the runners are restricted by inlet flange clamped to the cylinder head, because the former is less stiff than the latter and, the temperature of the inlet flange is lower than that of the runners. Since the failure of an exhaust manifold is mainly caused by geometric constraints between the cylinder head and the manifold, the thermal stress can be controlled by geometric factors. The generic geometric factors include the inter distance (2R), the distance from the head to the outlet (L), the tube diameter(d) and the tube thickness (t). This criteria based on elastic analysis up to onset of yield apparently indicate that the pre-stress also reduces the factor; however, high temperature relaxation may reduce this effect at later operation stage.

  • PDF

Numerical analysis of temperature fluctuation characteristics associated with thermal striping phenomena in the PGSFR

  • Jung, Yohan;Choi, Sun Rock;Hong, Jonggan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.10
    • /
    • pp.3928-3942
    • /
    • 2022
  • Thermal striping is a complex thermal-hydraulic phenomenon caused by fluid temperature fluctuations that can also cause high-cycle thermal fatigue to the structural wall of sodium-cooled fast reactors (SFRs). Numerical simulations using large-eddy simulation (LES) were performed to predict and evaluate the characteristics of the temperature fluctuations related to thermal striping in the upper internal structure (UIS) of the prototype generation-IV sodium-cooled fast reactor (PGSFR). Specific monitoring points were established for the fluid region near the control rod driving mechanism (CRDM) guide tubes, CRDM guide tube walls, and UIS support plates, and the normalized mean and fluctuating temperatures were investigated at these points. It was found that the location of the maximum amplitude of the temperature fluctuations in the UIS was the lowest end of the inner wall of the CRDM guide tube, and the maximum value of the normalized fluctuating temperatures was 17.2%. The frequency of the maximum temperature fluctuation on the CRDM guide tube walls, which is an important factor in thermal striping, was also analyzed using the fast Fourier transform analysis. These results can be used for the structural integrity evaluation of the UIS in SFR.