• Title/Summary/Keyword: high cycle fatigue

Search Result 334, Processing Time 0.025 seconds

Diagnosis and Monitoring of Socket Welded Pipe Damaged by Bending Fatigue Using Acoustic Emission Technique (음향방출법을 이용한 굽힘피로 손상된 소켓용접배관의 진단 및 감시)

  • Kim, C.S.;Oh, S.W.;Park, Ik-Keun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.28 no.4
    • /
    • pp.323-330
    • /
    • 2008
  • High cycle bending fatigue of socket welded small bore pipe was characterized, and also the fatigue crack initiation of small bore pipe was monitored in situ by the acoustic emission (AE) technique. The STS 316L stainless steel specimens were prepared by gas tungsten arc welding (GTAW) process having the artificial defect (i.e., lack of penetration) and defect free at the root. The fatigue failure was occurred at the loc for high stress and root for relatively low stress. The crack initiation cycles ($N_i$) was defined to the abrupt increase in AE counts during the fatigue test, and then the cracks were observed by the radiographic test and electron microscope before and after the fatigue crack initiation cycles. The socket welded pipe damaged by bending fatigue was studied regarding the welding defect, failure mode, and crack initiation cycles for the diagnosis and monitoring.

Study on tension-tension fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate (수중용접한 국산 SM41A-2강판의 편진반복 인장하중하의 피로강도특성에 관한 연구)

  • 오세규;박주성;한상덕
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.71-81
    • /
    • 1987
  • Nowadays, the high development of industrial technique demands the optimal design of marine structures to be welded under the water, because the underwater welding of the ship hull and marine structures can decrease manpower and cost of production. However there is not available at present any report on fatigue behavior about underwater welded joints. In this paper under tention- tension repeated fatigue stress with frequency of 10 cycles per second by local controlled system, the fatigue strength properties of underwater welded joints of SM41A-2 Plate-to-Plate of 10 mm thickness were experimentally examined. The results obtained were as follows : 1) The fatigue strength of underwater welded joints of SM41A-2 was peaked at the heat input of about 1, 400 joule/mm(180 A, 36 V), while, at the heat input of more than about 1, 100 joule/mm (160 A, 33 V) that of the underwater welds at the higher than cycle of life rather than the lower cycle was higher than that of the base metal but lower than that of the atmosphere welds on account of both cooling and notch effects. 2) The fatigue limit of underwater welds increased with an increase of heat input resulting in a peak of that at the heat input of about 1, 400 joule/mm and then decreased gradually. 3) The fatigue strength at N cycles was peaked between the heat input of about 1, 400 and 1, 700 joule/mm where the strain was rapidly increased. 4) It was confirmed that the optimal zone of heat input condition for obtaining the underwater welds fatigue strength higher than that of the base metal exists, and if out of this zone, the fatigue strength of the underwater welds was lower than that of the base metal because of lack weld penetration, inclusion of slag, voids, etc. 5) By the fatigue test, the underwater welds fractured brittly without visual deformation, so the strain was remarkably less than of the atmosphere welds. 6) The fatigue life factor was peaked at the heat input of about 1, 600 joule/mm (200 A, 36 V) at which the mean strain is a little higher than that of the base metal but quite lower than those of the atmosphere welds, resulting in good underwater welds because both fatigue strength and ductility of the underwater welds are higher than those of the base metal at such heat input.

  • PDF

Vibration Analysis of Bladed Disk using Non-contact Blade Vibration System (비접촉 진동측정 시스템을 이용한 블리스크의 진동분석)

  • Joung, Kyu-Kang;Kim, Myeong-Kuk;Park, Hee-Yong;Chen, Seung-Bae;Park, Noh-Gill
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.132-139
    • /
    • 2008
  • The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue (HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.

  • PDF

Calculation of Maximum Allowabel Temperature Difference for Life Design of Valve Casings for Steam Turbines of Fossil Power Plants (화력발전용 증기터빈 밸브 케이싱의 수명 설계를 위한 최대허용온도차 계산)

  • Ha, Joon-Wook;Kim, Tae-Woan;Lee, Boo-Youn
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.46-52
    • /
    • 1999
  • Large valves for steam turbines of fossil power plants are exposed to a severe mechanical and thermal loading resulting from steam with high pressure and high temperature. Valve casings are designed to withstand such a loading. During the operation of a plant, temperatures at inner and outer surface of the casings are measured and steam flow is controlled so that the measured difference is lower than the maximum allowable value determined in the design stage. In this paper, a method is presented to calculate the maximum allowable temperature difference at the inner and outer surface of valve casings for steam turbines of fossil power plants. The finite element method is used to analyze distribution of temperature and stresses of a casing under the operating condition. Low cycle fatigue and creep rupture are taken into consideration to determine the maximum allowable temperature difference. The method can be usefully applied in the design stage of the large valves for the steam turbines, contributing to safe and reliable operation of the fossil power plants.

  • PDF

Vibration Analysis of Bladed Disk using Non-contact Blade Vibration System

  • Joung, Kyu-Kang;Han, Chak-Heui;Kang, Suk-Chul;Kim, Yeong-Ryeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.871-876
    • /
    • 2008
  • The blade vibration problem of bladed disk is the most critical subject to consider since it directly affects the stable performance of the engine as well as life of the engine. Especially, due to complicated vibration pattern of the bladed disk, more effort was required for vibration analysis and test. The research of measuring the vibration of the bladed disk, using NSMS(Non-intrusive stress measurement) instead of Aeromechanics testing method requiring slip ring or telemetry system with strain gauge, was successful. These testing can report the actual stresses seen on the blades; detect synchronous resonances that are the source of high cycle fatigue(HCF) in blades; measure individual blade mis-tuning and coupled resonances in bladed disks. In order to minimize the error being created due to heat expansion, the tip timing sensor is installed parallel to the blade trailing edge, yielding optimal result. Also, when working on finite element analysis, the whole bladed disk has gone through three-dimensional analysis, evaluating the family mode. The result of the analysis matched well with the test result.

  • PDF

Study on the Change of Fatigue in Gastrointestinal Cancer Patients With the Time Relapse After Chemotherapy (소화기암환자의 항암요법 시간 경과에 따른 피로도 측정 연구)

  • Park, Jee-Won;Kim, Yong-Soon;Sue, Mi-Sook
    • Korean Journal of Adult Nursing
    • /
    • v.13 no.4
    • /
    • pp.620-631
    • /
    • 2001
  • Purpose: Fatigue is one of the most common complaints of cancer patients. In this study, we analyzed the change of fatigue level and general symptoms as time go by, so that, we could explain more on the mechanism and change of fatigue in relation with treatment, and explore the influencing factors. Method: The subjects of this study were 50 GI cancer patients who have visited the cancer center of A hospital in Suwon. We measured fatigue by using the Revised Piper Fatigue Scale(RPFS) at the time of starting and finishing induction chemotherapy, and starting the 2nd cycle of chemotherapy. Results: 1) The fatigue score was 2.81, 3.73, and 3.82 in a 10 point scale at the time of starting and finishing induction chemotherapy, and starting the 2nd chemotherapy, respectively. This means fatigue persisted until after the treatment. 2) Fifty two percent of participants complained of some kinds of symptoms when starting the treatment, and the proportion increased up to 92% when finishing the treatment. 3) Fatigue scores were significantly high in patients with fatigue-related symptoms than for patients without those symptoms. 4) Fatigue scores showed significant differences according to patients' general characteristics such as age, educational level, economic status, occupation, diagnosis, hematocrit, weight, and amount of sleepy. Conclusion: We have to develop intervention strategies to reduce fatigue in cancer patients in the consideration of influencing factors.

  • PDF

Study on Structural Characteristic for Durability Insurance of Turbopump Turbine (터보펌프 터빈의 내구성 확보를 위한 구조적 특성 연구)

  • Lee, Mu-Hyoung;Jang, Byung-Wook;Kwon, Jeong-Sik;Kim, Jin-Han;Jeong, Eun-Hwan;Jeon, Seong-Min;Lee, Soo-Yong;Park, Jung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.382-386
    • /
    • 2009
  • The life of a component decreases when it was exposed at the extreme condition. A turbine blade of a turbopump used for a liquid rocket engine is operated under the environment of high temperature and pressure, and experienced high centrifugal force. Thus the durability of the turbopump operated under the these conditions become lower than expected because of the severe fatigue and creep influence. The damage of the turbine being considered the fatigue and the creep influence is estimated to ensure the durability of turbopump turbine. ABAQUS/CAE and MSC.Fatigue are used for the fatigue analysis, and Larson-Miller parameter and robinson's rule are used for the creep analysis. In this paper, comparison and analysis of the fatigue and the creep influence were performed to ensure the life expectancy of turbopump turbine.

  • PDF

The Effect of Thermomechanical Treatment on the Microstructural Changes and Fatigue Properties in 7050 Al Alloy (7050 AI 합금의 가공열처리가 미세조직변화와 피로성질에 미치는 영향)

  • Kim, M.H.;Kwun, S.I.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.4 no.4
    • /
    • pp.24-33
    • /
    • 1991
  • The effects of thermomechanical treatments on microstructure and fatigue properties of 7050 Al alloy were investigated. The precipitation kinetics changed to a faster rate due to cold deformation employed in this special TAHA thermomechanical treatments including pre-aging, plastic deformation and two step final-aging. The G.P. zones in the under-aged condition were cut by dislocations and dissolved during the plastic deformation. During the low cycle fatigue, the T6' condition showed cyclic hardening behavior whereas the TMT5, TMT27 and T76 conditions showed cyclic softening at above 0.7% total strain amplitudes. The ${\Delta}K_{th}$ value of TMT27 was improved more than two times, compared with that of T76 condition. The T6' with small shearable precipitates resulted in the markedly high ${\Delta}K_{th}$ value. This is thought to be resulted from dislocation reversibility and roughness-induced crack closure due to planarity of slip.

  • PDF

Crack Closure Effects on Small Fatigue Crack Growth Behavior in High Strength Aluminum (고강도 알루미늄에서의 균열닫힘이 미소 피로균열의 전파거동에 미치는 영향)

  • Lee, Hyeon-U
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.4
    • /
    • pp.55-64
    • /
    • 1990
  • The fatigue crack growth behavior of physically-short cracks(0.2${\Delta}K$ with $da/dN<1{\times}10^{-7}m/cycle$. The transition crack lengths where similtude with ${\Delta}K$ existed was between 1 and 2mm. The effective stress intensity factor range based on COD measurements gave better correlation between the physically-short and long cracks. Thus it can be considered that the crack closure effect is one of the main factors which causes the differences between these two cracks.

  • PDF

Transport Property of Externally Reinforced Bi-2223 Superconducting Tape under Axial Fatigue Loading

  • Shin, Hyung-Seop;John-Ryan C. Dizon;Kim, Ki-Hyun;Oh, Sang-Soo;Ha, Dong-Woo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.6 no.4
    • /
    • pp.22-26
    • /
    • 2004
  • For practical applications, the evaluation of reliability or endurance of HTS conductors is necessary. The mechanical properties and the critical current, Ie, of multifilamentary Bi-2223 superconducting tapes, externally reinforced with stainless steel foils, subjected to high cycle fatigue loading in the longitudinal direction were investigated at 77K. The S-N curves were obtained and its transport property was evaluated with the increase of repeated cycles at different stress amplitudes. The effect of the stress ratio, R, on the Ie degradation behavior under fatigue loading was also examined considering the practical application situation of HTS tapes. Microstructure observation was conducted in order to understand the Ie degradation mechanism in fatigued Bi-2223 tapes.