• Title/Summary/Keyword: high cycle fatigue

Search Result 334, Processing Time 0.023 seconds

Oblique Incidence Technique for Ultrasonic Nonlinear Characterization in SUS316L Alloy (SUS316L 강의 초음파 비선형 특성평가를 위한 경사입사기법)

  • Baek, Seung-Hyun;Lee, Tae-Hun;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.4
    • /
    • pp.345-351
    • /
    • 2010
  • The oblique incidence technique for ultrasonic nonlinear characterization was studied in stainless steel 316L alloy subjected to high cycle fatigue. A dog-bone plate specimen was prepared to make different faitgue-driven deformation at each position where the stress concentration could occur in the middle of specimen. In addition to the normal transmission technique, the oblique incidence technique which is newly suggested in this study, was used to measure ultrasonic nonlinear parameter. The fatigued specimen shows higher ultrasonic nonlinear parameter than the virgin specimen for both techniques. Ultrasonic nonlinear parameter highly increases in the middle of test specimen where the stress concentration existes. Relative nonlinear parameter has strong correlation with fatigue damage. Consequently, the oblique incidence technique with longitudinal wave can be potential to characterize high cycle fatigue damage.

Effect of Stress Ratio on Fatigue Fracture of a Shot Peening Marine Structural Steel (쇼트피닝 가공된 해양구조용강의 피로파괴에 미치는 응력비의 영향)

  • PARK KYOUNG-DONG;JIN YOUNG-BEOM;PARK HYOUNG-DONG
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.5
    • /
    • pp.43-49
    • /
    • 2004
  • The lightness of components required in the automobile and machine industry necessitates the use of high strength components. In particular, the fatigue failure phenomena, which occurs when using metal, increases the danger to human life and property. Therefore, antifatigue failure technology is an integral part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel, while improving the fatigue strength on surface. Therefore, in this paper, the effect of compressive residual stress of spring steel(JISG SUP-9) by shot-peening on fatigue crack growth characteristics in a stress ratio(R=0.1, R=0.3, R=0.6) was investigated, giving consideration to fracture mechanics. By using the methods mentioned above, following conclusions are drawn: (1) The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material and in stage I, ΔKth, the threshold stress intensity factor of the shot-peen processed material is high in critical parts, unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material, was higher than that of the un-peening material, as concluded from effect of da/dN. (2) Fatigue life shows more improvement in the shot-peening material than in the un-peening material, and the compressive residual stress of surface on the shot-peen processed operate resistance of fatigue crack propagation.

Fatigue Characteristics and FEM Analysis of $18\%$Ni(200) Maraging Steel (18Ni 마르에이징강의 피로특성 및 유한요소해석)

  • Choi Byung Ki;Jang Kyeung Cheun
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.14 no.2
    • /
    • pp.75-82
    • /
    • 2005
  • Recently the needs of high reliable substances of high strength and high ductility are gradually increased with the development of aerospace industry. The characteristics of maraging steel has high ductililty, formability, corrosion resistant and high temperature strength and is easy to fabricate, weld and treat with heat, and maintain an invariable size even after heat treatment. e steels are furnished in the solution annealed condition and they achieve full properties through martensitic precipitation aging a relatively simple, low temperature heat treatment. As is true of the heat treating procedures, aging is a time/temperature dependent reaction. Therefore, the objective of this stud)'was consideration of fatigue characteristics according as Nb(niobium) content and time/temperature of heat treatment change. Also the stress analysis, fatigue lift, and stress intensity factor were compared with experiment results and FEA(finite element analysis) result. The maximum ftresses of)( Y, and Z axis direction showed about $2.12\times$10$^{2}$MPa, $4.40\times$10$^{2}$MPa and $1.32\times$10$^{2}$MPa respectively. The fatigue lives showed about $7\%$ lower FEA result than experiment result showing almost invariable error every analyzed cycle. Stress intensity factor of the FEA result was lower about $3.5~ 10\%$ than that of the experiment result showing that the longer fatigue crack ten添 the hi인or error. It considered that the cause for the difference was the modeled crack tip having always the same shape and condition regardless of the crack growth.

EVALUATION AND TEST OF A CRACK INITIATION FOR A 316 SS CYLINDRICAL Y-JUNCTION STRUCTURE IN A LIQUID METAL REACTOR

  • Park, Chang-Gyu;Kim, Jong-Bum;Lee, Jae-Han
    • Nuclear Engineering and Technology
    • /
    • v.38 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • A liquid metal reactor (LMR) operated at high temperatures is subjected to both cyclic mechanical loading and thermal loading; thus, creep-fatigue is a major concern to be addressed with regard to maintaining structural integrity. The Korea Advanced Liquid Metal Reactor (KALIMER), which has a normal operating temperature of $545^{\circ}C$ and a total service life time of 60 years, is composed of various cylindrical structures, such as the reactor vessel and the reactor baffle. This study focuses on the creepfatigue crack initiation for a cylindrical Y-junction structure made of 316 stainless steel (SS), which is subjected to cyclic axial tensile loading and thermal loading at a high-temperature hold time of $545^{\circ}C$. The evaluation of the considered creep-fatigue crack initiation was carried out utilizing the ${\sigma}_d$ approach of the RCC-MR A16 guide, which is the high-temperature defect assessment procedure. This procedure is based on the total accumulated strain during the service time. To confirm the evaluated result, a high-temperature creep-fatigue structural test was performed. The test model had a circumferential through wall defect at the center of the model. The defect front of the test model was investigated after the $100^{th}$ cycle of the testing by utilizing a metallurgical inspection technique with an optical microscope, after which the test result was compared with the evaluation result. This study shows how creep-fatigue crack initiation for a high-temperature structure can be predicted with conservatism per the RCC-MR A16 guide.

High Temperature Structural Integrity Evaluation Method and Application Studies by ASME-NH for the Next Generation Reactor Design

  • Koo, Gyeong-Hoi;Lee, Jae-Han
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.12
    • /
    • pp.2061-2078
    • /
    • 2006
  • The main purpose of this paper is to establish the high temperature structural integrity evaluating procedures for the next generation reactors, which are to be operated at over 500$^{\circ}C$ and for 60 years. To do this, comparison studies of the high temperature structural design codes and assessment procedures such as the ASME-NH (USA), RCC-MR (France), DDS (Japan), and R5 (UK) are carried out in view of the accumulated inelastic strain and the creep-fatigue damage evaluations. Also the application procedures of the ASME-NH rules with the actual thermal and structural analysis results are described in detail. To overcome the complexity and the engineering costs arising from a real application of the ASME-NH rules by hand, all the procedures established in this study such as the time-dependent primary stress limits, total accumulated creep ratcheting strain limits, and the creep-fatigue damage limits are computerized and implemented into the SIE ASME-NH program. Using this program, the selected high temperature structures subjected to two cycle types are evaluated and the parametric studies for the effects of the time step size, primary load, number of cycles, normal temperature for the creep damage evaluations and the effects of the load history on the creep ratcheting strain calculations are investigated.

Numerical Fatigue Test Method of Welded Structures Based on Continuum Damage Mechanics (연속체 손상역학을 이용한 용접구조물의 수치피로시험기법)

  • Lee, Chi-Seung;Kim, Young-Hwan;Kim, Tae-Woo;Yoo, Byung-Moon;Lee, Jae-Myung
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.67-73
    • /
    • 2008
  • Fatigue life evaluation of welded structures in a range of high cycles is one of the most difficult problems since extremely small plastic deformation and damage occur during the loading cycles. Moreover, it is very difficult to identify the strong non-linearities of welding, inducing residual stress. In this paper, numerical fatigue test method for welded structures was developed using continuum damage mechanics with inherent strain. Recently, continuum damage mechanics, which can simulate both crack initiation at the micro-scale level and crack propagation at the meso-scale level, has been adopted in the fracture related problem. In order to consider the residual stresses in the welded strictures, damage calculation in conjunction with welding, inducing inherent strain, was proposed. The numerical results obtained from the damage calculation were compared to experimental results.

The Effect of Compressive Residual Stress on Computer Corrosion Fatigue Crack of SAE 5155 (SAE 5155강의 컴퓨터부식피로 균열에 미치는 압축잔류응력의 영향)

  • Park, Sung-Mo;Moon, Kwang-Seok;Park, Kyung-Dong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.6 no.2
    • /
    • pp.34-40
    • /
    • 2007
  • Antifatigue failure technology take an important part of current industries. Currently, the shot peening is used for removing the defect from the surface of steel and improving the fatigue strength on surface. Therefore, this paper the effect of compressive residual stress and corrosion of spring steel(SAE 5155)by shot-peening on fatigue crack growth characteristics in stress ratio(R=0.05)was investigated with considering fracture mechanics. By using the methods mentioned above, We arrived at the following conclusions. The fatigue crack growth rate(da/dN) of the shot-peening material was lower than that of the un-peening material. And in stage I, ${\Delta}Kth$, the threshold stress intensity factor, of the shot-peen processed material is high in critical parts unlike the un-peening material. Also m, fatigue crack growth exponent and number of cycle of the shot-peening material was higher than that of the un-peening material. That is concluded from effect of da/dN. Finally fracture of shot-peening material and un-peening material was identified and discussed in this study.

  • PDF

Prediction of Shearing Die Life for Producing a Retainer using FE Analysis (유한요소해석을 이용한 리테이너 전단 금형 수명예측)

  • Lee, I.K.;Lee, S.Y.;Lee, S.K.;Jeong, M.S.;Seo, P.K.;Lee, K.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.24 no.4
    • /
    • pp.264-271
    • /
    • 2015
  • In the current study, a method was proposed to quantitatively predict the wear and fatigue life of a shearing die in order to determine an effective replacement period for the die. The shearing die model of a retainer manufacturing process was used for the proposed method of quantitative life prediction. The retainer is produced through shearing steps, such as piercing and notching. The shearing die of the retainer is carefully controlled because the dimensional accuracy of the retainer is critical. The fatigue life for the shearing die was predicted using ANSYS considering S-N curves of STD11 and Gerber’s equation. The wear life for the shearing die was predicted using DEFORM-3D considering the Archard’s wear model. Experimental shearing of the retainer was conducted to verify the effectiveness of the proposed method for predicting die life. The fatigue failure of the shearing die was macroscopically measured. The wear depth was measured using a 3D coordinate measuring machine. The results showed that the wear and fatigue life in the FE analysis agree well with the experimental results.