• Title/Summary/Keyword: high curing temperature

Search Result 504, Processing Time 0.027 seconds

Testing Investigation of Protective Coatings for Downhole Oil Tube

  • Zhang, Liping;Zhang, Qibin;Zhang, Yanjun;Xie, Beibei;Zhang, Yingying
    • Corrosion Science and Technology
    • /
    • v.7 no.1
    • /
    • pp.13-15
    • /
    • 2008
  • Aiming at the corrosion circumstances and corrosion prevention needs of downhole oil tubes, series protective coatings for downhole oil tubes have been developed in the authors' laboratory, including a baked type coating YG-01 and an air curing type coating YG-03, etc. The performance investigation of the coatings has been done for testing their corrosion resistance, mainly including salt fog test, immersion test in oil-field waste water and various acid solutions, high temperature and high pressure test in alkali solution or $H_2S/CO_2$ environment, as well as some other performances. The investigation results show that oil tube anti-corrosion coatings developed here can endure over 4000 hrs salt fog test, over 1000 hrs immersion in various acid solutions at room temperature and in boiling oil-field waste water. In addition, the coatings can keep intact after experiencing test in alkali solution under 70 MPa pressure at $150^{\circ}C$ for 24 hrs, and in simulative sour gas environment under the total pressure of 32 MPa ($P_{H_{2}S}=3.2MPa$, $P_{CO_{2}}=3.2MPa$) at $90^{\circ}C$ for 168 hrs, which show that the coatings can be used for corrosion prevention in downhole environments with specific high temperature and high pressure, such as sour gas wells. The other testing results show the oil tube protective coatings have excellent comprehensive performance.

THE EFFECT OF TEMPERATURE CHANGES ON THE PHYSICAL PROPERTIES OF POSTERIOR COMPOSITE RESINS (구치부용 복합 레진 가열시 물리적 성질의 변화에 관한 실험적 연구)

  • Park, Yeon-Hong;Min, Byung-Soon;Choi, Ho-Young;Park, Sung-Jin
    • Restorative Dentistry and Endodontics
    • /
    • v.14 no.1
    • /
    • pp.41-56
    • /
    • 1989
  • The purpose of this study was to examine the effect of temperature dependence of the behavior on the physical properties of posterior composite resins. Three light cure posterior composite resins (Heliomolar, Litefil-P, and P-50) and one chemical cure posterior composite resin (Bisfil-II) were used as experimental materials. Composite resin was placed in a cylindrical brass mold (2.5 mm high and 6.5 mm inside diameter) that was rested on a glass plate. Another flat glass was placed on top of the mold, and the plate was tightly clamped together. After the mold had been filled with the light cure composite material, the top surface was cured for 30 seconds with a light source. Chemical cure resin specimens were made in the same manner as above. Three hundreds and twenty composite resin specimens were constructed from the four composite materials. One hundred and sixty specimens of them were placed in a heater at $50^{\circ}C$, $75^{\circ}C$, $100^{\circ}C$, $125^{\circ}C$, $150^{\circ}C$, $175^{\circ}C$ and $200^{\circ}C$ for 5 minutes or 10 minutes respectively before compressive strengths were measured. Another one hundred and sixty specimens were tested for the diametral tensile strengths in the same way as above. They were randomly divided into eight groups according to the mode of heating methods as follows and stored in distilled water at $37^{\circ}C$ for 24 hours. Group $37^{\circ}C$ - specimens were stored at $37^{\circ}C$ in distilled water for 24 hours. Group $50^{\circ}C$ - specimens were heated at $50^{\circ}C$ after curing. Group $75^{\circ}C$ - specimens were heated at $75^{\circ}C$ after curing. Group $100^{\circ}C$ - specimens were heated at $100^{\circ}C$ after curing. Group $125^{\circ}C$ - specimens were heated at $125^{\circ}C$ after curing. Group $150^{\circ}C$ - specimens were heated at $150^{\circ}C$ after curing. Group $175^{\circ}C$ - specimens were heated at $175^{\circ}C$ after curing. Group $200^{\circ}C$ - specimens were heated at $200^{\circ}C$ after curing. Twenty specimens of each of four composite resins were respectively made by insertion of materials into same mold for examining the dimensional changes between before and after heating. The final eighty specimens were stored in distilled water at $37^{\circ}C$ for 24 hours before testing the dimensional changes. Compressive and diametral tensile strengths were measured crosshead speed 1mm/minute and 500Kg in full scale with a mechanical testing machine (DLC 500 Type, Shimadzu Co., Japan). Dimensional changes were determined by measuring the diametral changes of eighty specimens with micrometer (Mitutoyo Co., Japan). Results were as follows: 1. Diametral tensile strengths of specimens in all groups were increased with time heated compared with control group except for that in group $50^{\circ}C$ and the maximum diametral tensile strength was appeared in the specimen of Litefil-P heated for 10 minutes at $100^{\circ}C$. In heliomolar and P-50, it could be seen in the specimen heated for 10 minutes at $150^{\circ}C$, but in Bisfil-II, it could be found in the specimen heated for 5 minutes at $150^{\circ}C$. 2. Compressive strengths of specimens in all groups was tended to be also increased with time heated but that in group $50^{\circ}C$ and the maximum compressive strengths were showed in the same specimens conditioned as the diametral tensile strengths of four composite materials tested. 3. In Heliomolar, Litefil-P, and Bisfil-II, it was decreased in diameters of resin specimens between before heating and increased in diameters of resin specimens after storing in distilled water, but it was not in P-50. 4. There is little difference in diametral tensile strengths, compressive strengths, and dimensional changes followed by heating the resin specimens for 5 minutes and 10 minutes, but there is no statistical significances.

  • PDF

A Comparative Study on the Characteristics of Accelerated aging at Low and High Temperatures of the Fluorocarbon Rubber Composites (불소 고무복합체의 저온과 고온촉진노화 특성에 대한 비교 연구)

  • Park, JeongBae;Lee, BeomCheol;Jeong, YoonSeok;Park, SungHan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.915-922
    • /
    • 2017
  • The study on the thermal and oil resistance rubber composite, 2016. [6] predicted the lifetime of Fluorocarbon Rubber by accelerating aging at high temperature ($150^{\circ}C$, $175^{\circ}C$, $200^{\circ}C$). general rubber products are likely to exhibit different properties depending on the degradation factors such as temperature, humidity, ozone, light, emulsion, mechanical and electrical stress. To solve these problems, We compared the rate of change about tensile strength, elongation rate, volume change rate, weight change rate, thickness change rate, thermal conductivity in low temperature promoting aging on the basis of predictive lifetime of high temperature promoting aging. As a result of the review, the required life expectancy was satisfied, but there was a slight difference in the rate of change between the high-temperature promoted aging life result and the low temperature promoted aging life result. The cause was a reduction in "tensile strength / elongation" and an increase in "volume / weight / thickness" caused by the main chain decomposition of fluorine rubber due to aging at high temperature promoting aging. However, the low temperature promoting aging was caused by the curing reaction of fluorine rubber at $80^{\circ}C$. The tensile strength / elongation and volume / weight / thickness changes were small.

  • PDF

A Study on Trend of Tensile Properties with Ratio of Water Mixture under Low and High Temperature Environment in Hydroponic Polyurethane Waterproofing Materials (수경화성 폴리우레탄 도막재의 물 혼합비에 따른 저온 및 고온 환경에서의 인장성능 변화 추이 연구)

  • Kim, Dong-Bum;An, Hyun-Ho;Kim, Sun-Do;Park, Wan-Goo;Park, Jin Sang;Oh, Sang-Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2016.05a
    • /
    • pp.211-212
    • /
    • 2016
  • Due to a lack of objective and adequate study on the physical effects on hydroponic polyurethane waterproofing material water mixture ratio, construction site workers are having to rely on their hands-on experience to determine a mixture ratio, resulting in difficulty of maintaining quality management. Particularly in cases of rooftop exposed type hydroponic polyurethane materials, the varying temperature conditions make it further difficult for quality management control. in this regard, this study conducts tensile strength testing and compares the tensility change rates hydroponic polyurethane waterproofing materials with various water mixture ratios ranging from 0%~50% and exposed to alternating temperature change between -20℃ to 60℃ in the span of 1 hour after curing for 14 days.

  • PDF

Effect of Die Attach Film Composition for 1 Step Cure Characteristics and Thermomechanical Properties (다이접착필름의 조성물이 1단계 경화특성과 열기계적 물성에 미치는 영향에 관한 연구)

  • Sung, Choonghyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.12
    • /
    • pp.261-267
    • /
    • 2020
  • The demand for faster, lighter, and thinner portable electronic devices has brought about a change in semiconductor packaging technology. In response, a stacked chip-scale package(SCSP) is used widely in the assembly industry. One of the key materials for SCSP is a die-attach film (DAF). Excellent flowability is needed for DAF for successful die attachment without voids. For DAF with high flowability, two-step curing is often required to reduce a cure crack, but one-step curing is needed to reduce the processing time. In this study, DAF composition was categorized into three groups: cure (epoxy resins), soft (rubbers), hard (phenoxy resin, silica) component. The effect of the composition on a cure crack was examined when one-step curing was applied. The die-attach void and flowability were also assessed. The cure crack decreased as the amount of hard components decreased. Die-attach voids also decreased as the amount of hard components decreased. Moreover, the decrease in cure component became important when the amount of hard component was small. The flowability was evaluated using high-temperature storage modulus and bleed-out. A decrease in the amount of hard components was critical for the low storage modulus at 100℃. An increase in cure component and a decrease in hard component were important for the high bleed-out at 120℃(BL-120).

Research on Strength Development of High PFA Concrete (PFA 함유량이 높은 콘크리트의 강도발현에 관한 연구)

  • 이진용
    • Magazine of the Korea Concrete Institute
    • /
    • v.7 no.1
    • /
    • pp.126-135
    • /
    • 1995
  • The strength development of PFA concretes were invest~gated in this study. The work undertaken was divided into two parts which considered both the influence of PFA replacement level up to 45% and the effect of cement type at the high PRA leveI(45%). The additiorlal cement considered included a rapdhardemng portland ccnlent. The full range of concrete struc tural grades were studied anti ciight cu~ing contlltiorls covering those 11:ied 111 practlce were examined. The early strength retluced wit11 increasing PFA content. However, post 28days, the reverse was observed. It was posslhle through the use of rapid hardening portland cement at the high PFA level to achieve similar early strength to OPC concrete, with the same benefits noted above also being obtained post 28 days. The compressive strength uf hlgh PYA content concrt:tes at hgh temperature m s found to be higher than the ccmtrol at all ages hoth in water and alr. The same trends were observed at low t.ernperature in air. However, the reverse occur-ed at the low temperature In water.

Structural Development of Polypropylene Foam by Crosslinking and Processing Conditions (가교도와 공정 조건에 따른 폴리프로필렌 발포체 구조 변화)

  • 황대영;한갑동;홍다윗;이규일;이기윤
    • Polymer(Korea)
    • /
    • v.24 no.4
    • /
    • pp.529-537
    • /
    • 2000
  • The effects of the gel content on the cell structures of PP sheets by using an electron-curing system were investigated. Three extruded PP sheets crosslinked by three different doses were used for the batch foaming process with the supercritical state $CO_2$. Experiments were also performed in order to study the effects of the gel content, saturation pressure and temperature on cell structures. Then foaming conditions, such as temperature and duration of time, were changed. The amount of gas absorbed into PP samples was not affected by gel contents and the operating condition of saturation pressure, which was higher than 2000 psi. The foam cells of PP with a low gel content grew irregularly at a higher foaming temperature and for a longer duration of foaming time. However, PP samples with high gel content showed even cell structures and narrow tell size distributions under the severe conditions of high foaming temperatures and long duration of foaming time.

  • PDF

Changes in Sugar Contents and Storability of Yacon under Different Storage Conditions

  • Doo, Hong-Soo;Li, Hu-Lin;Kwon, Tae-Oh;Ryu, Jeom-Ho
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.45 no.5
    • /
    • pp.300-304
    • /
    • 2000
  • Tuberous roots of yacon (Polymnia sonchifolia Poeppig & Endlicher) were stored in different temperature and relative humidity conditions after curing for 30 days. Non-decadent percentage, moisture contents, brix degree and sugars were investigated. Whether temperature and relative humidity were high or not, most of the tuberous root decayed during storage, and the decayed percentage was increased as long as the storage period. In final, only 13% of tuberous roots remain intact at 4$^{\circ}C$, 85% relative humidity condition to be appeared best storage condition in this experiment and all of the tuberous root decayed in other storage conditions after 6 months. Moisture contents decreased a little in the high relative humidity. Even though tuberous roots decayed when stored at 1$0^{\circ}C$ and 2$0^{\circ}C$, most of brix degree reached about 17.0. Fructose, glucose and sucrose contents were 1.65, 1.15 and 0.35% at early storage period, and 1.6, 1.1 and 0.5% after 6 months at 4$^{\circ}C$, 85% relative humidity, respectively. In 3 temperature conditions, fructose and glucose increased for a month and then decreased successively afterwards, but sucrose increased gradually during 6 months. Also in 4 relative humidity conditions, fructose, glucose and sucrose contents were changed with similar to that of in temperature. Changes of fructose and glucose were the same except on 4$^{\circ}C$, 85% relative humidity, that was lower level than moisture of tuberous root.

  • PDF

A Study and Evaluation of Super High Early Strength Concrete as Pavement Overlay Materials for Early Traffic Opening(3) (신속개방형 콘크리트 도로포장재의 설계를 위한 평가 연구(3))

  • 임채용;엄태선;유재상;이종열;엄주용;조윤호
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.05a
    • /
    • pp.607-612
    • /
    • 2002
  • In road pavements, it is known that cement concrete pavement has superior durability, safety compared. But in repairing pavement, cement concrete pavement is not usually applied because of the length of time while the road is interrupted when using Ordinary and Rapid-hardening Portland Cement. And Super High Early Strength Cement and Ultra Super High Early Strength Cement are not favorable for ready mixed concrete because of rapid setting time, high slump loss and other restrictions. We developed special cement developing 1 day strength of over 30.0N/mm$^2$ to open the road within 1 day and workable time is maintained over 1 hour so that it can be used as ready mixed concrete. We performed experimental overlay construction with the cement and evaluated the mechanical property and the durability. At curing temperature of 8-l8$^{\circ}C$,the flexural strength was 6.4N/mm$^2$at 1 day, so that the road can be open to traffic within 1 day. In durability test, the hardened concrete showed higher durability than Portland cement concrete.

  • PDF

Polarizing Group Attached Acrylates and Polymers Viewing High Refractive Index

  • Kwon, Ji-Yun;Kim, Bong-Gun;Do, Jung-Yun;Ju, Jung-Jin;Park, Seung-Koo
    • Macromolecular Research
    • /
    • v.15 no.6
    • /
    • pp.533-540
    • /
    • 2007
  • We designed and successfully synthesized UV curable, functional acrylate monomers having a polarizing group, i.e., an electron-withdrawing and/or electron-donating group for the optical materials of high refractive index. Optical polymer films made from the functional methacrylate monomers were achieved with photo crosslinking under UV illumination. A monomer having amino and cyano groups (Dimer-CN) exhibited the highest refractive index ($n_{TE}$=1.595 at 850nm) among the studied methacrylate derivatives, due to the large polarizability of the dipolar monomer structures with electron-donating and withdrawing groups. By controlling the compositions of the functional acrylate monomer of copolymers, the refractive indices of the polymers were readily adjusted within a wide range of 1.498-1.595. The copolymers showed a high glass transition temperature $(T_g)$ and good thermal stability, which are desirable for optical applications. $T_g$ and $T_{10%}$ (10%-weight loss occurred) of the copolymers ranged from $120-140^{\circ}C$ and from $329-387^{\circ}C$, respectively.