• Title/Summary/Keyword: high curing temperature

Search Result 504, Processing Time 0.03 seconds

Characterization of Electrically Conductive Adhesives for Shingled Array Photovoltaic Cells (전도성 접착제 물성에 따른 슁글드 어레이 태양전지 특성 평가)

  • Jee, Hongsub;Choi, Wongyong;Lee, Jaehyeong;Jeong, Chaehwan
    • Current Photovoltaic Research
    • /
    • v.5 no.3
    • /
    • pp.95-99
    • /
    • 2017
  • The interconnecting shingled solar cells method shows extremely high ratio active area per total area and has the excellent potential for high power PV (photovoltaic). Compared to the conventional module, it can have much more active area due to busbar-free structure. The properties of ECA (electrically conductive adhesives) are significant to fabricate the shingled array PV since it should be used in terms of electric and structural connection. Various ECA were tried and characterized to optimize the soldiering conditions. The open circuit voltage of shingled array cells showed a three-fold increase and efficiency was also increased by 1.63%. The shingled array cells used in CE3103WLV showed the highest power and in CA3556HF the lowest curing temperature and very fast curing time.

Anisotropic Conductive Film (ACF) Prepared from Epoxy/Rubber Resins and Its Fabrication and Reliability for LCD

  • Kim, Jin-Yeol;Kim, Eung-Ryul;Ihm, Dae-Woo
    • Journal of Information Display
    • /
    • v.4 no.1
    • /
    • pp.17-23
    • /
    • 2003
  • A thermoset type anisotropic conductive adhesive film (ACAF) comprising epoxy resin and natural butyl rubber (NBR) as the binder, micro-encapsulated imidazole as the curing agent, and Ni/Au coated polymer bead as a conductive particle has been studied. These films have been prepared to respond to requirements such as improved contact resistance, current status less of than 60 ${\mu}m$ and reliability. These films can also be used for connection between the ITO glass for LCD panel and the flexible circuit board. The curing conditions for the connection were 40, 20 and 15 seconds at 150, 170 and 190 $^{\circ}C$, respectively. The initial contact resistance and adhesion strength were 0.5 ${\Omega}/square$ and 0.4 kg/cm under the condition of 30 kgf/$^{cm}^2}$, respectively. After completing one thousand thermal shock cycling tests between -15 $^{\circ}C$ and 100 $^{\circ}C$, the contact resistance was maintained below 0.7 ${\Omega}/square$. Durability against high temperature (80$^{\circ}C$) and high humidity (85 % RH) was also tested to confirm long-term stability (1000 hrs) of the conduction.

Structural and Property Changes in Glass-like Carbons Formed by Heat Treatment and Addition of Filler

  • Kim, Jangsoon;Kim, Myung-Soo;Hahm, Hyun-Sik;Lim, Yun-Soo
    • Macromolecular Research
    • /
    • v.12 no.4
    • /
    • pp.399-406
    • /
    • 2004
  • Glass-like carbon precursors shrink significantly during curing and carbonization, which leads to crack formation and bending. Cured furan resin powder and ethanol were added to furan resin to diminish the weight loss, to suppress the shrinkage and bending, and to readily release the gases evolved during polymerization and curing. Curing and carbonization were controlled by pressure and slow heating to avoid damage to the samples. The effect of the filler and ethanol on the fabrication process was examined by measuring the properties of the glass-like carbon, such as the specific gravity, bending strength, electrical resistivity, and microstructural change. The specific gravities of the filler-added glass-like carbons were higher than those of the ethanol-added samples because of the formation of macropores from the vaporization of ethanol during the curing and polymerization processes. Although the ethanol-added glass-like carbons exhibited lower bending strengths after carbonization than did the filler-added samples, the opposite result was observed after aging at 2,600$^{\circ}C$. We found that the macropores created from ethanol were contracted and removed upon heat treatment. The electrical resistivity of the glass-like carbon aged at 2,600$^{\circ}C$ was lower than those of the samples carbonized at 1,000$^{\circ}C$. We attribute this phenomenon to the fact that aging at high temperature led to well-developed microstructures, the removal of macropores, and the reduction of the surface area.

An Experimental Study on Early Strength Development of High-Strength Concrete to Apply Slip-Form (슬립폼 적용을 위한 고강도콘크리트의 조기강도 발현성상에 관한 실험적 연구)

  • 주지현;여동구;강석표;길배수;남재현;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.355-358
    • /
    • 2000
  • Nowadays, with high-storied and large-sized of structures, high-strength concrete is applied to the various kinds of concrete structure. Among of them, for reduction of completion time, high-strength concrete is applied to the high-storied tower, building which is constructed continuously by the slip-form method and it is expected to be on the increase. In this case, it is very important to grasp development of early-strength to apply the slip-form method. But the strength data prior 1 day is rare. Therefore, to apply slip-form method in field, this study aim is to present basic data for development of early-strength of high-strength concrete, through examining development of strength by different curing temperature, replacement of fly-ash.

  • PDF

Construction of Equipment for PV Module Manufacture and Temperature Characteristics of Laminator (태양전지 모듈 제조장치의 구성 및 Laminator의 온도 특성)

  • Kang, Gi-Hwan;So, Jung-Hun;Jung, Young-Seck;Jung, Myung-Woong;Yu, Gwon-Jong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1376-1378
    • /
    • 2002
  • Compare and examined Full Auto Line of PV module Manufacture Equipment and PV module Manufacture Equipment in the Korea. Full Auto Line has been constructed with Cell Selection. Tabbing & Stringing. Module Setting, Lamination, Curing and Module Testing, and Module Manufacture Line in the Korea has been constructed with Tabbing & Stringing. Module Setting, Lamination and Module Testing. Laminator's temperature Control is the most important Variable in Manufacture of PV module. Temperature Transformation of Center part of PV module is most high at Lamination, and Edge part is most low.

  • PDF

A Study on Thermosonic Bonding Process and Its Reliability Evaluation of Joints (열초음파 접합 공정과 접합부의 신뢰성 평가에 관한 연구)

  • Shin, Young-Eui;Pak, Jin-Suk;Son, Sun-Eik
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.22 no.8
    • /
    • pp.625-631
    • /
    • 2009
  • In this thesis, lateral thermosonic bonding with ACFs was investigated as a process to make high reliability joints for FPD fabrication. Conditions for thermosonic and thermocompression bonding with ACFs were determined and used to make specimens in a driving test jig for testing of bond reliability by thermal shock. The results showed that thermosonic bonding temperature of $199\;^{\circ}C$ and bonding time of 1s produced bonds with good reliability. Additionally, thermosonic bonding temperature and time were reduced and thermal shock test results compared to this proposed curing condition. It is concluded that theromosonic bonding with ACFs can be effectively applied to reduce bonding temperature and time compared with that of thermocompression bonding.

Effect of elevated temperatures on properties and color intensities of fly ash mortar

  • Wang, Her-Yung
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.89-100
    • /
    • 2008
  • This research examines the engineering properties and color intensities of mortar containing different amounts of fly ash (0, 5, 10 and 20%) mixed at different water-to-binder ratios (w/b = 0.23, 0.47 and 0.59) and exposed at different temperatures (T = 25, 100, 200, 400, 600 and $800^{\circ}C$). Results show that there is greater mass loss on ignition with high w/b and higher temperatures. In addition, the color channel image analyzer (Windows software written in Delphi) is utilized to study the relationship between the curing temperature and intensity of three primary colors, red, green and blue (RGB), of the fly ash mortar specimens. The results show that the RGB intensities on the specimen surface increases from that at $25^{\circ}C$. The mortar specimen becomes white with increase in w/b but without the addition of fly ash. Moreover, for mortar specimens with greater content of fly ash, red on the specimen surface has the greatest increase in intensity at elevated temperature. Observation the variations in color on the specimen surface may help estimate the highest elevated temperatures that concrete structures can withstand.

Measurement of the construction structure of hot-heated cement using nitrogen adsorption method (질소흡착법을 사용한 고온 가열 시멘트의 세공구조 측정)

  • Kim, Min-Hyouck;Lee, Gun-Cheol
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2020.06a
    • /
    • pp.140-141
    • /
    • 2020
  • Concrete has a lower thermal conductivity or thermal diffusion coefficient compared to other building materials, so it is widely used as fireproof compartment material or refractory material for structures. However, in the event of thermal damage such as fire, cement curing agents and aggregates act differently, resulting in heat generation or deterioration of tissue due to dehydration, resulting in deterioration of physical properties and fire resistance. Therefore, in this study, the processing structure of cement paste is measured through nitrogen absorption method. The test specimen is a cement paste of 40% W/C and is set at 1000 ℃ under heating temperature conditions. As the temperature rose, the micro-pore mass below was reduced based on about 0.01 감소m, but the air gap above that was increased.Thus, in the range of pores measured in nitrogen adsorption, the air mass tended to decrease under high temperature conditions.

  • PDF

Surface and Chemical Properties of Surface-Modified UHMWPE Powder and Mechanical and Thermal Properties of Its Impregnated PMMA Bone Cement V. Effect of Silane Coupling Agent on the Surface Modification of UHMWPE Powder

  • Yang Dae Hyeok;Yoon Goan Hee;Shin Gyun Jeong;Kim Soon Hee;Rhee John M.;Khang Gilson;Lee Hai Bang
    • Macromolecular Research
    • /
    • v.13 no.2
    • /
    • pp.120-127
    • /
    • 2005
  • Conventional poly(methyl methacrylate) (PMMA) bone cement has been widely used as an useful biopolymeric material to fix bone using artificial prostheses. However, many patients had to be reoperated, due to the poor mechanical and thermal properties of conventional PMMA bone cement, which are derived from the presence of unreacted MMA liquid, the shrinkage and bubble formation that occur during the curing process of the bone cement, and the high curing temperature ($above 100^{\circ}C$) which has to be used. In the present study, a composite PMMA bone cement was prepared by impregnating conventional PMMA bone cement with ultra high molecular weight polyethylene (UHMWPE) powder, in order to improve its mechanical and thermal properties. The UHMWPE powder has poor adhesion with other biopolymeric materials due to the inertness of the powder surface. Therefore, the surface of the UHMWPE powder was modified with two kinds of silane coupling agent containing amino groups (3-amino propyltriethoxysilane ($TSL 8331^{R}$) and N-(2-aminoethyl)-3-(amino propyltrimethoxysilane) ($TSL 8340^{R}$)), in order to improve its bonding strength with the conventional PMMA bone cement. The tensile strengths of the composite PMMA bone cements containing $3 wt\%$ of the UHMWPE powder surface-modified with various ratios of $TSL 8331^{R}$ and $TSL 8340^{R}$ were similar or a little higher than that of the conventional PMMA bone cement. However, no significant difference in the tensile strengths between the conventional PMMA bone cement and the composite PMMA bone cements could be found. However, the curing temperatures of the composite PMMA bone cements were significantly decreased.

Densification of Cf/SiC Composite Using PIP with Adding of Cyclohexene (Cyclohexene을 첨가한 PIP 공정 사용 Cf/SiC 복합재의 고밀도화)

  • Bae, Jin-Cheol;Cho, Kwang-Youn;Kim, Jun-Il;Im, Dong-Won;Park, Jong-Kyu;Lee, Man-Young;Lee, Jae-Yeol
    • Composites Research
    • /
    • v.26 no.5
    • /
    • pp.322-327
    • /
    • 2013
  • Carbon fiber-reinforced SiC matrix composites have good oxidation resistance and thermal shock resistance. These properties have allowed the composites to be applied to high-temperature structures. In this study, $C_f/SiC$ composites were fabricated via precursor infiltration and pyrolysis (PIP) process, including liquid phase infiltration and chemical vapor curing using cyclohexene. The final $C_f/SiC$ composites, which have gone through the PIP process five times, showed a density of $1.79g/cm^3$, as compared to a density of $0.43g/cm^3$ for pre-densified bare carbon fiber preform. As for the oxidation resistance characteristics, the weight of $C_f/SiC$ composite was maintained at 81% at $1400^{\circ}C$ in air for 6 hours. Chemical vapor curing (CVC) using cyclohexene has shown to be an effective method to achieve high densification, leading to increased oxidation resistance.