• Title/Summary/Keyword: high compression strength

Search Result 710, Processing Time 0.024 seconds

Research on eccentric compression of ultra-high performance fiber reinforced concrete columns

  • Ma, Kaize;Ma, Yudong;Liu, Boquan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.3
    • /
    • pp.211-221
    • /
    • 2019
  • To study the eccentric compression behavior of ultra-high performance fiber reinforced concrete (UHPFRC) columns, six UHPFRC columns and one high-strength concrete (HSC) column were tested. Variation parameters include load eccentricity, volume of steel fibers and stirrup ratio. The crack pattern, failure mode, bearing capacity, and deformation of the specimens were studied. The results showed that the UHPFRC columns had different failure modes. The large eccentric compression failure mode was the longitudinal tensile reinforcements yielded and many horizontal cracks appeared in the tension zone. The small eccentric compression failure mode was the longitudinal compressive reinforcements yielded and vertical cracks appeared in the compressive zone. Because of the bridging effect of steel fibers, the number of cracks significantly increased, and the width of cracks decreased. The load-deflection curves of the UHPFRC columns showed gradually descending without sudden dropping, indicating that the specimens had better deformation. The finite element (FE) analysis was performed to stimulate the damage process of the specimens with monotonic loading. The concrete damaged plasticity (CDP) model was adopted to characterize the behaviour of UHPFRC. The contribution of the UHPFRC tensile strength was considered in the bearing capacity, and the theoretical calculation formulas were derived. The theoretical calculation results were consistent with the test results. This research can provide the experimental and theoretical basis for UHPFRC columns in engineering applications.

Strength of Compression Lap Splice in Confined Concrete (횡구속된 콘크리트에서 압축이음강도)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.855-858
    • /
    • 2008
  • A compression lap splice can be calculated longer than a tension lap splice in high strength concrete according to current design codes. Including effects of transverse reinforcement, a compression splice becomes much longer than a tension splice. Effects of transverse reinforcement on strength and behavior of compression lap splice, which always exist in actual structures, have been investigated through experimental study of column tests with concrete strength of 40 and 60 MPa. Confined specimens have twice of calculated strengths by current design codes. New design equations for the compression lap splice including the effects of transverse reinforcement are required for practical purpose of ultra-high strength concrete. End bearing is enhanced by transverse reinforcement placed at ends of splice not by transverse reinforcement within splice length. As more transverse reinforcement are placed, the stresses developed by bond linearly increase. The transverse reinforcements at ends of splice a little improve the strength by bond.

  • PDF

Predictions of curvature ductility factor of doubly reinforced concrete beams with high strength materials

  • Lee, Hyung-Joon
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.831-850
    • /
    • 2013
  • The high strength materials have been more widely used in reinforced concrete structures because of the benefits of the mechanical and durable properties. Generally, it is known that the ductility decreases with an increase in the strength of the materials. In the design of a reinforced concrete beam, both the flexural strength and ductility need to be considered. Especially, when a reinforced concrete structure may be subjected an earthquake, the members need to have a sufficient ductility. So, each design code has specified to provide a consistent level of minimum flexural ductility in seismic design of concrete structures. Therefore, it is necessary to assess accurately the ductility of the beam sections with high strength materials in order to ensure the ductility requirement in design. In this study, the effects of concrete strength, yield strength of reinforcement steel and amount of reinforcement including compression reinforcement on the complete moment-curvature behavior and the curvature ductility factor of doubly reinforcement concrete beam sections have been evaluated and a newly prediction formula for curvature ductility factor of doubly RC beam sections has been developed considering the stress of compression reinforcement at ultimate state. Based on the numerical analysis results, the proposed predictions for the curvature ductility factor are verified by comparisons with other prediction formulas. The proposed formula offers fairly accurate and consistent predictions for curvature ductility factor of doubly reinforced concrete beam sections.

Design Equations of Compression Splice Strength and Length in Concrete of 100 MPa and Less Compressive Strength (100 MPa 이하 콘크리트의 철근 압축 이음 강도와 이음 길이 설계)

  • Chun, Sung-Chul;Lee, Sung-Ho;Oh, Bo-Hwan
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.2
    • /
    • pp.211-217
    • /
    • 2011
  • Although a compression splice length does not need to be longer than a tension splice length due to end bearing effect, current design codes impose a longer compression lap splice than a tension lap splice in high strength concrete. Hence, new criteria for the compression lap splice including concrete strength effect need to be found for economical design of ultra-high strength concrete. An experimental study has been conducted using column specimens with concrete strength of 80 and 100 MPa with transverse reinforcement. The test results showed that splice strengths improved when the amount of transverse reinforcement increased. However, end bearing strength did not increase when larger amount of transverse reinforcement is provided within the spliced zone. Therefore, the splice strength enhancement was attributed to the improvement of bond. From regression analysis of 94 test results including specimens made with concrete strength of 40 and 60 MPa, a new design equation is proposed for compression lap splice in the concrete compressive strength ranging from 40 to 100 MPa with transverse reinforcement. By using the proposed equation, the incorrect design equations for lap splice lengths in tension and compression can be corrected. In addition, the equation has a reliability equivalent to those of the specified strengths of materials.

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

The Experimental Study on Early Strength Properties of High Volume Fly-Ash Concrete (플라이애쉬를 다량 치환한 콘크리트의 초기강도성상에 관한 실험적 연구)

  • 이동하;김상미;강태경;백민수;이영도;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.281-286
    • /
    • 2002
  • To study of binder and fine aggregate a lot of replacement fly-ash concrete, initial characteristics, standard environment of curing temperature $20^{\circ}C$, hot-weather environment of curing temperature $35^{\circ}C$, . Flesh concrete tested slump. air contest and Hardening concrete valuated setting period of form, day of age 1, 3, 5. 7, 10, 28 compression strength in sealing curing. Purpose of study is consultation materials in field that variety of fly-ash replacement concrete mix proportion comparison and valuation. (1) Experiment result age 28day compression strength more higher plan concrete then standard environment in curing temperature $20^{\circ}C$, , most strength F43 is hot-weather environment in curing temperature $35^{\circ}C$, replacement binder 25%, fine aggregate 15%. (2) Hot-weather environment replacement a mount of fly-ash is a same of plan concrete setting period of form. Age 28day compression strength replacement a mount of fly-ash more hot-weather concrete then plan concrete.

  • PDF

Dynamic response of coal and rocks under high strain rate

  • Zhou, Jingxuan;Zhu, Chuanjie;Ren, Jie;Lu, Ximiao;Ma, Cong;Li, Ziye
    • Geomechanics and Engineering
    • /
    • v.29 no.4
    • /
    • pp.451-461
    • /
    • 2022
  • The roadways surrounded by rock and coal will lose their stability or even collapse under rock burst. Rock burst mainly involves an evolution of dynamic loading which behaves quite differently from static or quasi-static loading. To compare the dynamic response of coal and rocks with different static strengths, three different rocks and bituminous coal were selected for testing at three different dynamic loadings. It's found that the dynamic compression strength of rocks and bituminous coal is much greater than the static compression strength. The dynamic compression strength and dynamic increase factor of the rocks both increase linearly with the increase of the strain rate, while those of the bituminous coal are irregular due to the characteristics of multi-fracture and heterogeneity. Moreover, the absorbed energy of the rocks and bituminous coal both increase linearly with an increase in the strain rate. And the ratio of absorbed energy to the total energy of bituminous coal is greater than that of rocks. With the increase of dynamic loading, the failure degree of the sample increases, with the increase of the static compressive strength, the damage degree also increases. The static compassion strength of the bituminous coal is lower than that of rocks, so the number of small-scale fragments was the largest after bituminous coal rupture.

An Experimental and Analytical Study on Shear Transfer for Safety Evaluation of Concrete Structure (콘크리트 구조물의 전단 안정성 평가를 위한 전단전달 실험 및 해석)

  • Kim, Kwang-Soo
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.3
    • /
    • pp.42-50
    • /
    • 2008
  • This study, push-off tests for the initially uncracked specimens were conducted to investigate shear transfer mechanism in reinforce concrete elements. Experimental programs for shear transfer were undertaken to investigate the effect of the concrete compressive strength, the presence of steel stirrups as shear reinforcement and the amount of steel stirrups. As the shear plane is loaded, several cracks form in a direction inclined to the shear plane, creating compression struts in the concrete. For this stage, shear is being transferred through a truss-like action produced by the combination of the compressive force in the concrete struts and the tensile force that the steel reinforcement crossing the shear plane develops. In the normal strength concrete specimens with steel stirrups, ultimate failure occurred when the compression struts crushed in concrete. In the high strength concrete specimens, on the other hand, ultimate failure occurred when the steel stirrups developed their yield strength.

Deformation Properties of TiC-Mo Eutectic Composite at High Temperature (TiC-Mo 공정복합재료의 고온 변형특성)

  • Shin, Soon-Gi
    • Korean Journal of Materials Research
    • /
    • v.23 no.10
    • /
    • pp.568-573
    • /
    • 2013
  • The deformation properties of a TiC-Mo eutectic composite were investigated in a compression test at temperatures ranging from room temperature to 2053 K and at strain rates ranging from $3.9{\times}10^{-5}s^{-1}$ to $4.9{\times}10^{-3}s^{-1}$. It was found that this material shows excellent high-temperature strength as well as appreciable room-temperature toughness, suggesting that the material is a good candidate for high-temperature application as a structure material. At a low-temperature, high strength is observed. The deformation behavior is different among the three temperature ranges tested here, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurs, and from the beginning the work hardening level is high. At a high temperature, a yield drop occurs again, after which deformation proceeds with nearly constant stress. The temperature- and yield-stress-dependence of the strain is the strongest in this case among the three temperature ranges. The observed high-temperature deformation behavior suggests that the excellent high-temperature strength is due to the constraining of the deformation in the Mo phase by the thin TiC components, which is considerably stronger than bulk TiC. It is also concluded that the appreciable room-temperature toughness is ascribed to the frequent branching of crack paths as well as to the plastic deformation of the Mo phase.

High Temperature Deformation Behavior of Fe-base High Strength Alloys (고강도 Fe계 합금의 고온 변형 특성)

  • Kwon, Woon-Hyun;Choi, Il-Dong
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.6
    • /
    • pp.938-946
    • /
    • 2008
  • Fe-base amorphous alloy and two crystalline phases composite were fabricated. The effect of temperature and strain rate on mechanical properties was evaluated utilizing compression test. Mixture of non-crystalline and crystalline phases were found using X-ray diffraction (XRD) and differential thermal analysis (DTA) tests. Based on glass transition temperature and crystallization temperature. compression tests were performed in the temperature ranging from $560^{\circ}C$ to $700^{\circ}C$ with $20^{\circ}C$ interval. Relationship between microstructure, including fracture surface morphology, and mechanical behavior was studied. The peak stress of Fe-base amorphous alloy was over 2GPa and expected to have a good wear resistance, but it is expected hard to deform because of low ductility. The peak stress and elongation of two crystalline phases composite was over 1GPa and about 20%, therefore it is possible to deform high strength wear resistant materials such as engine valve.