• Title/Summary/Keyword: high aspect ratio structure

Search Result 192, Processing Time 0.025 seconds

A Study about the Optical Mixing in accordance with High-Strength Steel and Concrete Strength Levels (고강도 철근과 콘크리트 강도수준에 따른 최적조합에 관한 연구)

  • Choi, Pan-Gil;Lee, Bong-Hak
    • Journal of Industrial Technology
    • /
    • v.26 no.B
    • /
    • pp.111-118
    • /
    • 2006
  • The reinforced concrete structure is one of the most popular structures in real construction. Concrete has been strengtened rapidly due to the development of new material and construction technology. But as the concrete has been getting stronger, the brittleness of material has increased and the better ductility has been required. So, the study for strengthening stiffener has been urgently needed. As we said above, it is expected that the use of high strength steel and concrete will be increased. However, The experimental data is not enough for solving problems of the use of high strengthened steel and concrete. In this research, we analyzed 45 combinations of the strength levels of concrete, the thickness of material and the steel strength with regard to simple Reinforced Concrete SLAB Beam bridge. The program MIDAS CIVIL was used to find the optimal combination. As a result, it was found that strength ratio per unit section is in inverse proportion to the strength of material and that the strengths of steel are respectively 400 MPa for low strengthened concrete and 300 MPa for high strengthened concrete. For economic aspect and usability, the effect of high strength steel is not as high as we expected it would be.

  • PDF

Facile fabrication of ZnO Nanostructure Network Transistor by printing method

  • Choi, Ji-Hyuk;Moon, Kyeong-Ju;Jeon, Joo-Hee;Kar, Jyoti Prakash;Das, Sachindra Nath;Khang, Dahl-Young;Lee, Tae-Il;Myoung, Jae-Min
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.31.1-31.1
    • /
    • 2010
  • Various ZnO nanostructures were synthesized and ZnO nanostructure-based self-assembled transistors were fabricated. Compared to spindle and flower like nanostructure, the ZnO nanorod (NR) structure showed much stronger gate controllability, and greatly enhanced device performance, demonstrating that this structural variation leads to significant differences of the nanostructure network-based device performance. Also, patterned dry transfer-printing technique that can generate monolayer-like percolating networks of ZnO NRs has been developed. The method exploits the contact area difference between NR-NR and NR-substrate, rather than elaborate tailoring of surface chemistry or energetic. The devices prepared by the transferring method exhibited on/off current ratio, and mobility of ${\sim}2.7{\times}10^4$ and ${\sim}1.03\;cm^2/V{\cdot}s$, respectively. Also, they exhibited showing lower off-current and stronger gate controllability due to defined-channel between electrodes and monolayer-like network channel configuration. With multilayer stacks of nanostructures on stamp, the monolayer-like printing can be repeated many times, possibly on large area substrate, due to self-regulating printing characteristics. The method may enable high-performance macroelectronics with materials that have high aspect ratio.

  • PDF

Manufacturing of Three-dimensional Micro Structure Using Proton Beam (양성자 빔을 이용한 3차원 마이크로 구조물 가공)

  • Lee, Seonggyu;Kwon, Won Tae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.4
    • /
    • pp.301-307
    • /
    • 2015
  • The diameter of a proton beam emanating from the MC-50 cyclotron is about 2-3 mm with Gaussian distribution. This widely irradiated proton beam is not suitable for semiconductor etching, precise positioning, and micromachining, which require a small spot. In this study, a beam cutting method using a microhole is proposed as an economical alternative. We produced a microhole with aspect ratio, average diameter, and thickness of 428, $21{\mu}m$, and 9 mm, respectively, for cutting the proton beam. By using this high-aspect-ratio microhole, we conducted machinability tests on microstructures with sizes of tens of ${\mu}m$. Additionally, the results of simulation using GEANT4 and those of the actual experiment were compared and analyzed. The outcome confirmed the possibility of implementing a micro process technology for the fabrication of three-dimensional microstructures of 20 micron units using the MC-50 cyclotron with the microhole.

HPA Structure Design and Power Measurement (인간동력항공기 구조설계와 동력측정)

  • Lee, Chung-Ryul;Park, Ju-Won;Go, Eun-Su;Choi, Jong-Soo;Kim, In-Gul;Kim, Byoung-Soo
    • Aerospace Engineering and Technology
    • /
    • v.12 no.2
    • /
    • pp.209-220
    • /
    • 2013
  • The process of designing and building a human-powered aircraft (HPA) and its performance analysis are introduced in this paper. Light Bros, the Chungnam National University HPA team, has developed Volante, a HPA, to compete in the 2012 exhibition of human-powered aircraft hosted by Korea Aerospace Research Institute. The power train system is composed of a two-blade propeller and Bevel-type gear and the ground test bed is built to simulate the operation. A study has been made to find a efficient propeller based upon the test result of thrust and power available from a pilot under various propeller conditions and running time. The load and structural analysis is conducted for the glider-shaped wing made of composite material which has very high aspect ratio. The spar is analyzed using finite element modeling followed by the comparison of its displacement and strain on structural test. As a result, the performance and safety is confirmed.

Experimental investigation on shear capacity of partially prefabricated steel reinforced concrete columns

  • Yang, Yong;Chen, Yang;Zhang, Jintao;Xue, Yicong;Liu, Ruyue;Yu, Yunlong
    • Steel and Composite Structures
    • /
    • v.28 no.1
    • /
    • pp.73-82
    • /
    • 2018
  • This paper experimentally and analytically elucidates the shear behavior and shear bearing capacity of partially prefabricated steel reinforced concrete (PPSRC) columns and hollow partially prefabricated steel reinforced concrete (HPSRC) columns. Seven specimens including five PPSRC column specimens and two HPSRC column specimens were tested under static monotonic loading. In the test, the influences of shear span aspect ratio and difference of cast-in-place concrete strength on the shear behavior of PPSRC and HPSRC columns were investigated. Based on the test results, the failure pattern, the load-displacement behavior and the shear capacity were focused and analyzed. The test results demonstrated that all the column specimens failed in shear failure mode with high bearing capacity and good deformability. Smaller shear span aspect ratio and higher strength of inner concrete resulted in higher shear bearing capacity, with more ductile and better deformability. Furthermore, calculation formula for predicting the ultimate shear capacity of the PPSRC and HPSRC columns were proposed on the basis of the experimental results.

Fabrication of Polymer Master with High Aspect Ratio by Using Anodic Aluminum Oxidation (양극산화공정을 이용한 고세장비의 폴리머 마스터 제작)

  • Kwon, J.T.;Shin, H.G.;Seo, Y.H.;Kim, B.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.285-287
    • /
    • 2008
  • AAO(Anodic Aluminum Oxidation) method has been known that it is practically useful for the fabrication of nano-structures and makes it possible to fabricate the highly ordered nano masters on large surface and even on the 2.5 or 3D surface at low cost comparing to the expensive e-beam lithography or the conventional silicon processing. In this study, by using the multi-step anodizing and etching processes, highly ordered nano patterned master with concave shapes was fabricated. By varying the processing parameters, such as initial matter and chemical conditions; electrical and thermal conditions; time scheduling; and so on, the size and the pitch of the nano pattern can be controlled. Consequently, various alumina/aluminum nano structures can be easily available in any size and shape by optimized anodic oxidation in various aqueous acids. In order to replicate nano patterned master, the resulting good filled uniform nano molded structure through electro-forming process shows the validity of the fabricated nano pattern masters.

  • PDF

Spheroidization Behavior of SK85 High Carbon Steel (SK85 고탄소강의 구상화 거동)

  • Ha, T.K.;Kim, K.J.;Na, G.H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.10a
    • /
    • pp.350-353
    • /
    • 2009
  • In the present study, the effect of initial microstructure, cold reduction ratio, and annealing temperature on the spherodization rate of SK85 high carbon steel sheet was investigated. High carbon steel sheet fabricated by POSCO was soaked at $800^{\circ}C$ for 2 hr in a box furnace and then treated at $570^{\circ}C$ for 5 min in a salt bath furnace followed by water quenching to obtain a fine pearlite structure. Cold rolling was conducted on the sheets of fine pearlite by reduction ratios of 20, 30, and 40% and heat treatment for spheroidization was carried out at 600 and $720^{\circ}C$ for the various time intervals from 0.1 to 32 hrs. Area fraction of spheroidized cementite was measured with an image analyzer as a function of cold reduction ratios and duration times.

  • PDF

Optimization for Fused Quartz DRIE using Taguchi Method (다구치 방법을 이용한 비정질 수정 건식 식각 최적화)

  • Song, Eun-Seok;Jung, Hyung-Kyun;Hwang, Young-Seok;Hyun, Ik-Jae;Kim, Yong-Kwon;Beak, Chang-Wook
    • Proceedings of the KIEE Conference
    • /
    • 2008.10a
    • /
    • pp.129-130
    • /
    • 2008
  • In this paper, optimal DRIE process conditions for fused quartz are experimentally determined by Taguchi method to develop high-performance inertial sensors based on the fused quartz material, which is known to have high Q-factors. Using Si layer as an etch mask, which was formed by previously developed bonding process of the fused quartz and Si wafer, fused quartz DRIE process was performed. Different 9 flow rate conditions of $C_4F_8$, $O_2$, He gas have been tested and the optimum combination of these factors was estimated. By this work, the ability to fabricate high aspect ratio fused quartz structure was confirmed.

  • PDF

Nano Molding Technology for Optical Storage Media with Large-area Nano-pattern (대면적 광 정보저장매체의 나노성형에 대한 기술 개발)

  • Shin Hong-Gue;Ban Jun-Ho;Cho Ki-Chul;Kim Heon-Yong;Kim Byeong-Hee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.162-167
    • /
    • 2006
  • Hot embossing lithography(HEL) has the production advantage of comparatively few process step, simple operation, a relatively low cost for embossing tools(Si), and high replication accuracy for small features. In this paper, we considered the nano-molding characteristic according to molding parameters(temperature, pressure, times, etc) and induced a optimal molding condition using HEL. High precision nano-patter master with various shapes were designed and manufactured using the DRIE(Deep Reactive ion Etching), LPCVD(Low Pressure Chemical Vapor Deposition) and thermal oxidation process, and we investigated the molding characteristic of DVD and Blu-ray nickel stamp. We induced flow behaviors of polymer, rheology by shapes and sizes of the pattern through various molding experiments. Finally, with achieving nano-structure molding with high aspect ratio, we will secure a basic technology about the molding of large-area nano-pattern media.

Flutter Analysis of Flexible Wing for Electric Powered UAV (전기동력무인기 유연날개 플러터 해석)

  • Lee, Sang-Wook;Shin, Jeong Woo;Choi, Yong-Joon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.189-192
    • /
    • 2014
  • Recently, development of electric powered UAV for high altitude and long endurance mission has been conducted worldwide. Long endurance requirement necessitates high lift over drag (L/D) aerodynamic characteristics and lightweight structures, leading to highly flexible wings with high aspect ratio. These highly flexible wings increase the danger of catastrophic aircraft failure due to flutter, which is a dynamic aeroelastic instability occurring from the interaction of aerodynamic, inertial, and elastic forces acting on the aircraft flying through the air. In this paper, flexible wing for electric powered UAV whose skin is fabricated using mylar film for lightweight design is briefly explained. In addition, flutter analysis procedures and results for the flexible wing in order to substantiate the aeroelastic stability requirements are presented.

  • PDF