• Title/Summary/Keyword: high accuracy reconstruction

Search Result 120, Processing Time 0.03 seconds

Rigorous Modeling of the First Generation of the Reconnaissance Satellite Imagery

  • Shin, Sung-Woong;Schenk, Tony
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.3
    • /
    • pp.223-233
    • /
    • 2008
  • In the mid 90's, the U.S. government released images acquired by the first generation of photo reconnaissance satellite missions between 1960 and 1972. The Declassified Intelligent Satellite Photographs (DISP) from the Corona mission are of high quality with an astounding ground resolution of about 2 m. The KH-4A panoramic camera system employed a scan angle of $70^{\circ}$ that produces film strips with a dimension of $55\;mm\;{\times}\;757\;mm$. Since GPS/INS did not exist at the time of data acquisition, the exterior orientation must be established in the traditional way by using control information and the interior orientation of the camera. Detailed information about the camera is not available, however. For reconstructing points in object space from DISP imagery to an accuracy that is comparable to high resolution (a few meters), a precise camera model is essential. This paper is concerned with the derivation of a rigorous mathematical model for the KH-4A/B panoramic camera. The proposed model is compared with generic sensor models, such as affine transformation and rational functions. The paper concludes with experimental results concerning the precision of reconstructed points in object space. The rigorous mathematical panoramic camera model for the KH-4A camera system is based on extended collinearity equations assuming that the satellite trajectory during one scan is smooth and the attitude remains unchanged. As a result, the collinearity equations express the perspective center as a function of the scan time. With the known satellite velocity this will translate into a shift along-track. Therefore, the exterior orientation contains seven parameters to be estimated. The reconstruction of object points can now be performed with the exterior orientation parameters, either by intersecting bundle rays with a known surface or by using the stereoscopic KH-4A arrangement with fore and aft cameras mounted an angle of $30^{\circ}$.

Lightweight Single Image Super-Resolution Convolution Neural Network in Portable Device

  • Wang, Jin;Wu, Yiming;He, Shiming;Sharma, Pradip Kumar;Yu, Xiaofeng;Alfarraj, Osama;Tolba, Amr
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4065-4083
    • /
    • 2021
  • Super-resolution can improve the clarity of low-resolution (LR) images, which can increase the accuracy of high-level compute vision tasks. Portable devices have low computing power and storage performance. Large-scale neural network super-resolution methods are not suitable for portable devices. In order to save the computational cost and the number of parameters, Lightweight image processing method can improve the processing speed of portable devices. Therefore, we propose the Enhanced Information Multiple Distillation Network (EIMDN) to adapt lower delay and cost. The EIMDN takes feedback mechanism as the framework and obtains low level features through high level features. Further, we replace the feature extraction convolution operation in Information Multiple Distillation Block (IMDB), with Ghost module, and propose the Enhanced Information Multiple Distillation Block (EIMDB) to reduce the amount of calculation and the number of parameters. Finally, coordinate attention (CA) is used at the end of IMDB and EIMDB to enhance the important information extraction from Spaces and channels. Experimental results show that our proposed can achieve convergence faster with fewer parameters and computation, compared with other lightweight super-resolution methods. Under the condition of higher peak signal-to-noise ratio (PSNR) and higher structural similarity (SSIM), the performance of network reconstruction image texture and target contour is significantly improved.

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

Analysis of 3D Accuracy According to Determination of Calibration Initial Value in Close-Range Digital Photogrammetry Using VLBI Antenna and Mobile Phone Camera (VLBI 안테나와 모바일폰 카메라를 활용한 근접수치사진측량의 캘리브레이션 초기값 결정에 따른 3차원 정확도 분석)

  • Kim, Hyuk Gi;Yun, Hong Sik;Cho, Jae Myoung
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.33 no.1
    • /
    • pp.31-43
    • /
    • 2015
  • This study had been aimed to conduct the camera calibration on VLBI antenna in the Space Geodetic Observation Center of Sejong City with a low-cost digital camera, which embedded in a mobile phone to determine the three-dimension position coordinates of the VLBI antenna, based on stereo images. The initial values for the camera calibration have been obtained by utilizing the Direct Linear Transformation algorithm and the commercial digital photogrammetry system, PhotoModeler $Scanner^{(R)}$ ver. 6.0, respectively. The accuracy of camera calibration results was compared with that the camera calibration results, acquired by a bundle adjustment with nonlinear collinearity condition equation. Although two methods showed significant differences in the initial value, the final calibration demonstrated the consistent results whichever methods had been performed for obtaining the initial value. Furthermore, those three-dimensional coordinates of feature points of the VLBI antenna were respectively calculated using the camera calibration by the two methods to be compared with the reference coordinates obtained from a total station. In fact, both methods have resulted out a same standard deviation of $X=0.004{\pm}0.010m$, $Y=0.001{\pm}0.015m$, $Z=0.009{\pm}0.017m$, that of showing a high degree of accuracy in centimeters. From the result, we can conclude that a mobile phone camera opens up the way for a variety of image processing studies, such as 3D reconstruction from images captured.

Improving Diagnostic Performance of MRI for Temporal Lobe Epilepsy With Deep Learning-Based Image Reconstruction in Patients With Suspected Focal Epilepsy

  • Pae Sun Suh;Ji Eun Park;Yun Hwa Roh;Seonok Kim;Mina Jung;Yong Seo Koo;Sang-Ahm Lee;Yangsean Choi;Ho Sung Kim
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.374-383
    • /
    • 2024
  • Objective: To evaluate the diagnostic performance and image quality of 1.5-mm slice thickness MRI with deep learningbased image reconstruction (1.5-mm MRI + DLR) compared to routine 3-mm slice thickness MRI (routine MRI) and 1.5-mm slice thickness MRI without DLR (1.5-mm MRI without DLR) for evaluating temporal lobe epilepsy (TLE). Materials and Methods: This retrospective study included 117 MR image sets comprising 1.5-mm MRI + DLR, 1.5-mm MRI without DLR, and routine MRI from 117 consecutive patients (mean age, 41 years; 61 female; 34 patients with TLE and 83 without TLE). Two neuroradiologists evaluated the presence of hippocampal or temporal lobe lesions, volume loss, signal abnormalities, loss of internal structure of the hippocampus, and lesion conspicuity in the temporal lobe. Reference standards for TLE were independently constructed by neurologists using clinical and radiological findings. Subjective image quality, signal-to-noise ratio (SNR), and contrast-to-noise ratio (CNR) were analyzed. Performance in diagnosing TLE, lesion findings, and image quality were compared among the three protocols. Results: The pooled sensitivity of 1.5-mm MRI + DLR (91.2%) for diagnosing TLE was higher than that of routine MRI (72.1%, P < 0.001). In the subgroup analysis, 1.5-mm MRI + DLR showed higher sensitivity for hippocampal lesions than routine MRI (92.7% vs. 75.0%, P = 0.001), with improved depiction of hippocampal T2 high signal intensity change (P = 0.016) and loss of internal structure (P < 0.001). However, the pooled specificity of 1.5-mm MRI + DLR (76.5%) was lower than that of routine MRI (89.2%, P = 0.004). Compared with 1.5-mm MRI without DLR, 1.5-mm MRI + DLR resulted in significantly improved pooled accuracy (91.2% vs. 73.1%, P = 0.010), image quality, SNR, and CNR (all, P < 0.001). Conclusion: The use of 1.5-mm MRI + DLR enhanced the performance of MRI in diagnosing TLE, particularly in hippocampal evaluation, because of improved depiction of hippocampal abnormalities and enhanced image quality.

Three-dimensional comparison of 2 digital models obtained from cone-beam computed tomographic scans of polyvinyl siloxane impressions and plaster models

  • Park, Jin-Yi;Kim, Dasomi;Han, Sang-Sun;Yu, Hyung-Seog;Cha, Jung-Yul
    • Imaging Science in Dentistry
    • /
    • v.49 no.4
    • /
    • pp.257-263
    • /
    • 2019
  • Purpose: This study was performed to evaluate the dimensional accuracy of digital dental models constructed from cone-beam computed tomographic (CBCT) scans of polyvinyl siloxane (PVS) impressions and cast scan models. Materials and Methods: A pair of PVS impressions was obtained from 20 subjects and scanned using CBCT (resolution, 0.1 mm). A cast scan model was constructed by scanning the gypsum model using a model scanner. After reconstruction of the digital models, the mesio-distal width of each tooth, inter-canine width, and inter-molar width were measured, and the Bolton ratios were calculated and compared. The 2 models were superimposed and the difference between the models was measured using 3-dimensional analysis. Results: The range of mean error between the cast scan model and the CBCT scan model was -0.15 mm to 0.13 mm in the mesio-distal width of the teeth and 0.03 mm to 0.42 mm in the width analysis. The differences in the Bolton ratios between the cast scan models and CBCT scan models were 0.87 (anterior ratio) and 0.72 (overall ratio), with no significant difference (P>0.05). The mean maxillary and mandibular difference when the cast scan model and the CBCT scan model were superimposed was 53 ㎛. Conclusion: There was no statistically significant difference in most of the measurements. The maximum tooth size difference was 0.15mm, and the average difference in model overlap was 53 ㎛. Digital models produced by scanning impressions at a high resolution using CBCT can be used in clinical practice.

Forensic Classification of Latent Fingerprints Applying Laser-induced Plasma Spectroscopy Combined with Chemometric Methods (케모메트릭 방법과 결합된 레이저 유도 플라즈마 분광법을 적용한 유류 지문의 법의학적 분류 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.125-133
    • /
    • 2020
  • An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.

A Lossless Vector Data Compression Using the Hybrid Approach of BytePacking and Lempel-Ziv in Embedded DBMS (임베디드 DBMS에서 바이트패킹과 Lempel-Ziv 방법을 혼합한 무손실 벡터 데이터 압축 기법)

  • Moon, Gyeong-Gi;Joo, Yong-Jin;Park, Soo-Hong
    • Spatial Information Research
    • /
    • v.19 no.1
    • /
    • pp.107-116
    • /
    • 2011
  • Due to development of environment of wireless Internet, location based services on the basis of spatial data have been increased such as real time traffic information as well as CNS(Car Navigation System) to provide mobile user with route guidance to the destination. However, the current application adopting the file-based system has limitation of managing and storing the huge amount of spatial data. In order to supplement this challenge, research which is capable of managing large amounts of spatial data based on embedded database system is surely demanded. For this reason, this study aims to suggest the lossless compression technique by using the hybrid approach of BytePacking and Lempel-Ziv which can be applicable in DBMS so as to save a mass spatial data efficiently. We apply the proposed compression technique to actual the Seoul and Inchcon metropolitan area and compared the existing method with suggested one using the same data through analyzing the query processing duration until the reconstruction. As a result of comparison, we have come to the conclusion that suggested technique is far more performance on spatial data demanding high location accuracy than the previous techniques.

Source Enumeration Method using Eigenvalue Gap Ratio and Performance Comparison in Rayleigh Fading (Eigenvalue Gap의 Ratio를 이용한 신호 개수 추정 방법 및 Rayleigh Fading 환경에서의 신호 개수 추정 성능 비교)

  • Kim, Taeyoung;Lee, Yunseong;Park, Chanhong;Choi, Yeongyoon;Kim, Kiseon;Lee, Dongkeun;Lee, Myung-Sik;Kang, Hyunjin
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.24 no.5
    • /
    • pp.492-502
    • /
    • 2021
  • In electronic warfare, source enumeration and direction-of-arrival estimation are important. The source enumeration method based on eigenvalues of covariance matrix from received is one of the most used methods. However, there are some drawbacks such as accuracy less than 100 % at high SNR, poor performance at low SNR and reduction of maximum number of estimating sources. We suggested new method based on eigenvalues gaps, which is named AREG(Accumulated Ratio of Eigenvalues Gaps). Meanwhile, FGML(Fast Gridless Maximum Likelihood) which reconstructs the covariance matrix was suggested by Wu et al., and it improves performance of the existing source enumeration methods without modification of algorithms. In this paper, first, we combine AREG with FGML to improve the performance. Second, we compare the performance of source enumeration and direction-of-arrival estimation methods in Rayleigh fading. Third, we suggest new method named REG(Ratio of Eigenvalues Gaps) to reduce performance degradation in Rayleigh Fading environment of AREG.

A New Calibration of 3D Point Cloud using 3D Skeleton (3D 스켈레톤을 이용한 3D 포인트 클라우드의 캘리브레이션)

  • Park, Byung-Seo;Kang, Ji-Won;Lee, Sol;Park, Jung-Tak;Choi, Jang-Hwan;Kim, Dong-Wook;Seo, Young-Ho
    • Journal of Broadcast Engineering
    • /
    • v.26 no.3
    • /
    • pp.247-257
    • /
    • 2021
  • This paper proposes a new technique for calibrating a multi-view RGB-D camera using a 3D (dimensional) skeleton. In order to calibrate a multi-view camera, consistent feature points are required. In addition, it is necessary to acquire accurate feature points in order to obtain a high-accuracy calibration result. We use the human skeleton as a feature point to calibrate a multi-view camera. The human skeleton can be easily obtained using state-of-the-art pose estimation algorithms. We propose an RGB-D-based calibration algorithm that uses the joint coordinates of the 3D skeleton obtained through the posture estimation algorithm as a feature point. Since the human body information captured by the multi-view camera may be incomplete, the skeleton predicted based on the image information acquired through it may be incomplete. After efficiently integrating a large number of incomplete skeletons into one skeleton, multi-view cameras can be calibrated by using the integrated skeleton to obtain a camera transformation matrix. In order to increase the accuracy of the calibration, multiple skeletons are used for optimization through temporal iterations. We demonstrate through experiments that a multi-view camera can be calibrated using a large number of incomplete skeletons.