• Title/Summary/Keyword: high absorbent polymer

Search Result 8, Processing Time 0.026 seconds

The Comparison of Absorption Characteristics between High Absorbent Polymers and Cellulose (고흡수성(高吸水性) Polymer와 Cellulose의 흡수특성(吸水特性) 비교(比較))

  • Yang, In;Ahn, Won-Yung
    • Journal of the Korean Wood Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.36-48
    • /
    • 1990
  • This experiment was carried out to improve the quality of high absorbent polymer which has excellent absorptivity and water retention compared to pulp and absorption sheet, through absorption characteristics-absorptive power, water retention, absorption rate, gel strength, pH, particle size, and moisture content. - of six polymers, namely, anionic polyacrylamide, cationic polyacrylamide, polyacrylic, acid polyvinyle alcohol 500, and 1500, and a-cellulose. and to examine the possibility of substitution of amide groups for carboxyl group and/or hydroxyl group which were commercial high absorbent polymer by comparing the absorption characteristics of the polymers. Polyacrylamide has high absorptive power and water retention, but has low gel strength and poor absorption rate. The rest of polymers were similiar to ${\alpha}$-cellulose in every respect. Thus, polyacrylamides could be replaced with polyacrylic acid and polyvinyl alcohol which are presently a high absorbent polymers. In comparing the absorption characteristics and the absorptive power of the polymers-anionic polyacrylamide, cationic polyacrylamide, polyacrylic acid, polyvinyle alcohol. a-cellulose-the absorptive power was in inverse proportion to the gel strength and absorption rates, affected by the particle size and pH change.

  • PDF

Address Electrode for PDP by Ink-Jet Method

  • Park, Lee-Soon;Im, Moo-Sik;Jung, Young-Chul
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.775-777
    • /
    • 2003
  • Several methods are available for the fabrication of electrode pattern for the plasma display panel(PDP) including screen printing and photolithographic method. Piezo type ink-jet printing method is considered to the method of choice for electrode patterning in manufacturing of PDP. Both silver ink and absorbent layer paste formulation were developed for ink-jet printing of electrode pattern. The ink-jet printing of silver electrode with preformed absorbent layer was especially suitable for the patterning of address electrode for high resolution PDP.

  • PDF

Novel Recycling Technology of Ultra-fine Fibrous Materials

  • Kim, Seong-Hun;Oh, Kyung-Wha;Lee, Shin-Kyung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.209-209
    • /
    • 2006
  • Ultra-fine fibers are spun by expensive fiber spinning technology using special spinnerets. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance wiping cloths, water absorbent sound proofing materials and moisture transfer sporting good. However, production expense of ultra-fine fibers is 5 to 7 times higher than general textile materials. The objective of this research is to develop cost-effective recycling process to produce multi-functional ultra-fine fibrous material in terms of the development of garnetting and carding machines for ultra-fine fibrous material waste and scrap. The efficiency of sound absorption for the recycled polyester nonwoven increased with decreasing length and thickness of component fibers, which was attributed to the reduction of air permeability. It is expected that high value and cost-effective textile products are developed using ultra-fine fibrous wastes and that sound proofing material and oil absorbent f

  • PDF

Swelling Behavior of Biodegradable Crosslinked Gel based on Poly(aspartic acid) and PEG-diepoxide

  • Min, Suk-Kee;Kim, Ji-Heung;Chung, Dong-Jun
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.143-149
    • /
    • 2001
  • Poly(aspartic acid), PASP, is a biodegradable, water-soluble polymer and offers a biodegradable alternative to polycarboxylates and other non-degradable water-soluble polymers. PASP one of poly (amino acid)s, possesses carboxylic acid pendant group in its repeating unit, which can be used for various further modification purposes. In this study we prepared high molecular weight polysuccinimide, as the precursor polymer for PASP, by thermal polycondensation ofL-aspartic acid in the presence of phosphoric acid. The polysuccinimide was hydrolyzed with 0.1 N sodium hydroxide, and then acidified to give PASP. High water-absorbent gels were produced by thermal crosslinking of freeze-dried mixture of partially-neutralized PASP and different amount of low moi. wt. PEG-diepoxide compounds in aqueous medium. The swelling behavior of the prepared gels from different size and composition of crosslinking reagent in different media was investigated and the results were discussed. This PASP-based hydrogel materials possessing inherent biodegradability, potential non-toxicity and biocompatibility, is expected to be used as a substrate for various biomedical applications as well as a general purpose super-absorbent polymer.

  • PDF

Swelling Behavior of Low Toxic Absorbent Based on Biopolymer (생물고분자로 이루어진 저독성 흡수제의 팽윤거동)

  • Jung, Jin Hee;Kim, Jin;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • v.37 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • In this study, hydrogels with fast swelling and high absorbent properties were prepared using biopolymers approved as a food additive and their swelling properties were characterized. To improve the swelling properties of conventional hydrogels, we formed gas bubbles using a foaming agent in the process of preparing hydrogels and characterized in terms of equilibrium swelling ratio, swelling kinetics and cytotoxicity. In particular, alginate hydrogels observed by a digital microscope have an open-pore channels structure with the sizes of hundreds micrometers. Also, the cell viability of all hydrogels were found to be much higher than that of poly(acrylic acid).

UV Absorbent-added Polymerization and its Application as Ophthalmological Material (자외선 흡수제를 첨가한 고분자 중합 및 안 의료용 소재로의 적용)

  • Sung, A-Young;Kim, Tae-Hun;Ye, Ki-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.98-103
    • /
    • 2011
  • This study was done for the preparation of macromolecular material with UV-blocking features by adding the benzophenone group that is commonly used as a UV-absorbent and $TiO_2$ which is known to be a very stable material in chemical and physical aspects. Also, we compared the level of UV absorbency of the polymer produced from polymerization with previous materials and measured basic properties such as water content, refractive index and optical transmittance of produced contact lenses. The results of the measurement showed that the refractive index and water content of the contact lens with added UV-absorbent was 1.430~1.440 and 35.0~45.0% respectively, which was similar to that of previous contact lenses. Also, for optical transmittances of each wave length, contact lenses without the UV-absorbent was 89%, 88% and 89% respectively for UV-A, UV-B and visible light, indicating that the UV transmittance is very high though contrary with cases of contact lenses with added 2-hydroxy-4-methoxy-benzophenone and 2,4-dihydroxy-benzophenone which showed transmittances of 0% and 6% respectively for UV-A and UV-B showing a UV-blocking effect. Meanwhile, contact lenses with added $TiO_2$ showed transmittance of 6% and 51% respectively for UV-A and UV-B also showing a UV-blocking effect. The visible transmittance was 77~89% showing that it satisfies the visible transmittance required for ophthalmological materials.

Effect of Internal Curing by Super-Absorbent Polymer (SAP) on Hydration, Autogenous Shrinkage, Durability and Mechanical Characteristics of Ultra-High Performance Concrete (UHPC) (고흡수성 수지(SAP)를 이용한 내부양생이 초고성능 콘크리트(UHPC)의 수화반응, 자기수축, 내구성 및 역학적 특성에 미치는 영향)

  • Kang, Sung-Hoon;Moon, Juhyuk;Hong, Sung-Gul
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.317-328
    • /
    • 2016
  • This research intends to understand the impact of super-absorbent polymer (SAP) as an internal curing agent in Ultra-High Performance Concrete (UHPC). Two different types of SAPs of acrylic acid (SAP_AA) and acrylic acid-co-acrylamide (SAP_AM) were examined with UHPC formulation. Isothermal calorimetry and x-ray diffraction experiments revealed the impact of polymers with the different chemical bonds on cement hydration. To test its feasibility as a shrinkage reducing admixture for UHPC, a series of experiments including flowability, compressive strength, rapid chloride permeability and autogenous shrinkage profile was performed. While both SAPs showed a reduction in autogenous shrinkage, it has been concluded that the SAP size and chemical form significantly affect the performance as an internal curing agent in UHPC by controlling cement hydration and porosity modification. Between the tested SAPs, SAP_AM which absorbs more water in UHPC than SAP_AA, shows better mechanical and durability performance.

Studies on the Recovery of Useful Materials from Disposable Diaper Waste using Pilot Stock Preparation Units (파일럿 지료 조성설비를 이용한 폐 일회용 기저귀의 유용성분 회수에 관한 연구)

  • Lee, Tai Ju;Nam, Yoon Seok;Park, Jeong Eun;Jo, Jun Hyung;Ryu, Jeong Yong;Lee, Ho Sun
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.4
    • /
    • pp.66-75
    • /
    • 2015
  • Disposable diaper waste is consisted of plastic, fiber, and SAP (Super Absorbent Polymer). They are valuable to be used as raw materials of other products including plastic blocks and pulp mold. Nevertheless, disposable diaper waste have been disposed by landfill and incineration without recycling. Due to strict environmental regulations it is necessary to develop fractionation technique to recycle the disposable diaper waste. In this study the fractionation technique using pilot-scale stock preparation units was investigated. Process for separation of plastic and fibers from disposable diaper waste was composed by the combination of pilot-scale pulper, drum screen, screen and cleaner. Recovery rate of plastics and fiber was checked according to the various operating conditions. In drum screen, recovery rate of plastic was high when the cut size of disposable diaper waste was $5cm{\times}5cm$. The highest recovery rate of fiber was achieved with 0.3 mm slot screen. It is important to control the neutral state of SAP for improvement of recovery rate of fiber since SAP can be swelled easily in water. Therefore SAP can be controlled efficiently by the addition of calcium chloride into the pulper. Consequently recovery rates of plastics and fibers were over 90 and 80% under the optimum pilot operating conditions.