• Title/Summary/Keyword: high SNR

Search Result 675, Processing Time 0.027 seconds

Multi-Channel Data Acquisition System Design for Spiral CT Application

  • Yoo, Sun-Won;Kim, In-Su;Kim, Bong-Su;Yun Yi;Kwak, Sung-Woo;Cho, Kyu-Sung;Park, Jung-Byung
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2002.09a
    • /
    • pp.468-470
    • /
    • 2002
  • We have designed X-ray detection system and multi-channel data acquisition system for Spiral CT application. X-ray detection system consists of scintillator and photodiode. Scintillator converts X-ray into visible light. Photodiode converts visible light into electrical signal. The multi-channel data acquisition system consists of analog, digital, master and backplane board. Analog board detects electrical signal and amplifies signal by 140dB. Digital board consists of MUX(Multiplex) which routes multi-channel analog signal to preamplifier, and ADC(Analog to Digital Converter) which converts analog signal into digital signal. Master board supplies the synchronized clock and transmits the digital data to image reconstructor. Backplane provides electrical power, analog output and clock signal. The system converts the projected X-ray signal over the detector array with large gain, samples the data in each channel sequentially, and the sampled data are transmitted to host computer in a given time frame. To meet the timing limitation, this system is very flexible since it is implemented by FPGA(Field Programmable Gate Array). This system must have a high-speed operation with low noise and high SNR(signal to noise ratio), wide dynamic range to get a high resolution image.

  • PDF

A study on the improvement of receiver antenna as elevation angle on optical satellite communication downlink for B-ISDN (B-ISDN용 광휘성통신 다운링크의 앙각에 따른 수신안테나 개선에 관한 연구)

  • 이상규;한종석;정진호;김영권
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.32A no.3
    • /
    • pp.1-9
    • /
    • 1995
  • In the B-ISDN using satellite between geo-satellites and earth stations, the laser having high security and broad band width has to be used as a carrier for transmitting massive information of visual, vocal, and high rate data. In this paper, by computer simulation we analyzed the number of optical detector array of optical satellite communication downlink in case of using channel coding and no channel coding for BISDN between geo-satelites and earth stations under clear weather condition. It was supposed that 1 watt semiconductor laser was used and as modulation method, the binary FSK was used. The data rate of 10Gbps was used for B-ISDN. Also, hardly affected by atmospheric absorption 1.55$\mu$m wave-length was used to reduce influence of dispersion and chirp generated at a high speed transmission. We analyzed the received power, SNR and BER. The number of optical detector array was determined to satisfy for the BER less than 10$^{-7}$. Also, we ananlyzed the possibility of reducting the number of optical detector array in case of using channel coding. the number of optical detector array is one in the region where the elevation nangle is between 38$^{\circ}$ and 90$^{\circ}$ and two where the elevation angle is between 33$^{\circ}$ and 37$^{\circ}$ and three where the elevation angle is between 30$^{\circ}$ and 32$^{\circ}$ and increases per one as the elevation angle decreases per 1.deg.. So in the region where the elevation angle is 25$^{\circ}$, the number of optical detector arrays is eight. In case of using channel coding, the number of optical detector arrays decreases to five in the region where the elevation angle is 25$^{\circ}$. Therefore, we remaark the advantage of the channelcoding to decrease the size of received antenna and the number ob optical detector arrays.

  • PDF

The study for electric readout of X-ray signal using MOSFET (MOSFET를 이용한 X선 신호의 전기적 획득에 관한 연구)

  • Park, S.K.;Kang, Y.S.;Seo, J.H.;Park, J.K.;Nam, S.H.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1998 no.11
    • /
    • pp.295-296
    • /
    • 1998
  • With xeroradiography appearance, DR (Digital Radiography) system have been studying for X-ray detection using photoreceptor. Also detection method for receptor charge change have been developing variably. We use photoreceptor material of a-Se(Amorphous Selenium) with high DQE, high SNR(Signal to Noise Ratio) and high transformation efficiency of X-ray signals into electrical signals. After a-Se receptor is uniformly charged by using Arc discharge, X-ray is exposed. Then a-Se receptor produce subtle charge variation and MOSFET detect charge variations. The detected signal pass A/D converter and signal processing by PC. As results, the initial voltage is 8V. It has wide dynamic range needed digital radiography system. In this study, we obtained data with changing kVp(tube potential voltage) and fixed 8mAs(tube current by exposure time) in X-ray system. However MOSFET detector for X-ray signal is not tested X-ray mAs variations. But if MOSFET detector is tested X-ray mAs variation and exactly calibrated multichannel is made and noise-reduction is done, suitable DR system readout method will be done.

  • PDF

High Quality Audio Watermarking using Spread Spectrum and Psychoacoustic Model (대역확산과 심리음향 모델을 이용한 고음질 오디오 워터마킹)

  • Noh Jin-Soo;Rhee Kang-Hyeon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.5 s.311
    • /
    • pp.48-56
    • /
    • 2006
  • In this paper, we proposed the high quality audio watermarking algorithm using MDCT/IMDCT (Modified DCT/Inverse Modified DCT) with psychoacoustic model. Generally, a digital audio watermark is embedding the frequency domain after frequency transform of the digital audio data but the digital audio quality is affected by watermarking. In our scheme, the digital audio data is spread with PN((Pseudo Noise) code and then audio watermark is embedded in MDCT processing that refers psychoacoustic model. In MDCT processing, according to the shape of filter bank output, the block switching selects a window sequence that has 256, 1,024 or 2,048 points interval for high quality audio. The author confirm that when watermark weight ${\alpha}$ is 2.5 below, the detection ratio of watermark is a satisfied to SDMI's(Secure Digital Music Initiative) recommendation 50% above and SM is $50{\sim}68dB$ range with mainly 4 kind of attacks(Compression, Cropping, FFT and Echo).

Cooperative Diversity Performance Using Duo-Binary Turbo Codes (Duo-Binary 터보 부호를 이용한 협동 다이버시티 성능 분석)

  • Yeo, Sung-Moon;Kim, Soo-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.2
    • /
    • pp.38-45
    • /
    • 2009
  • In this paper, we propose an efficient cooperative diversity technique, which partition the codewords of each mobile and transmit portions of each codeword through independent fading channels using duo-binary turbo codes. A coded diversity technique can achieve high cooperative diversity gain by decoding and transmitting of the re-encoded signal, while this can also cause high performance degradation due to failure of the decoding. In this paper, we introduce various coded diversity technique using duo-binary turbo codes which are defined as channel coding schemes in the IEEE WiMax specification, and also demonstrate performance simulation results with the analysis. We also propose a cooperative diversity technique using rate-compatible duo-binary turbo codes, where user terminals with different parity symbols cooperate each other. Simulation results investigated in this paper reveal that the proposed scheme show high diversity gain at a reasonal SNR range.

An Efficient Decoding Method for High Throughput in Underwater Communication (수중통신에서 고 전송률을 위한 효율적인 복호 방법)

  • Baek, Chang-Uk;Jung, Ji-Won;Chun, Seung-Yong;Kim, Woo-Sik
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.4
    • /
    • pp.295-302
    • /
    • 2015
  • Acoustic channels are characterized by long multipath spreads that cause inter-symbol interference. The way in which this fact influences the design of the receiver structure is considered. To satisfy performance and throughput, we presented consecutive iterative BCJR (Bahl, Cocke, Jelinek, Raviv) equalization to improve the performance and throughput. To achieve low error performance, we resort to powerful BCJR equalization algorithms that iteratively update probabilistic information between inner decoder and outer decoder. Also, to achieve high throughput, we divide long packet into consecutive small packets, and the estimate channel information of previous packets are compensated to next packets. Based on experimental channel response, we confirmed that the performance is improved for long length packet size.

Calibration of ShadowCam

  • David Carl Humm;Mallory Janet Kinczyk;Scott Michael Brylow;Robert Vernon Wagner;Emerson Jacob Speyerer;Nicholas Michael Estes;Prasun Mahanti;Aaron Kyle Boyd;Mark Southwick Robinson
    • Journal of Astronomy and Space Sciences
    • /
    • v.40 no.4
    • /
    • pp.173-197
    • /
    • 2023
  • ShadowCam is a high-sensitivity, high-resolution imager provided by NASA for the Danuri (KPLO) lunar mission. ShadowCam calibration shows that it is well suited for its purpose, to image permanently shadowed regions (PSRs) that occur near the lunar poles. It is 205 times as sensitive as the Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC). The signal to noise ratio (SNR) is greater than 100 over a large part of the dynamic range, and the top of the dynamic range is high enough to accommodate most brighter PSR pixels. The optical performance is good enough to take full advantage of the 1.7 meter/pixel image scale, and calibrated images have uniform response. We describe some instrument artifacts that are amenable to future corrections, making it possible to improve performance further. Stray light control is very challenging for this mission. In many cases, ShadowCam can image shadowed areas with directly illuminated terrain in or near the field of view (FOV). We include thorough qualitative descriptions of circumstances under which lunar brightness levels far higher than the top of the dynamic range cause detector or stray light artifacts and the size and extent of the artifact signal under those circumstances.

Characteristics of a new cone beam computed tomography

  • Park, Chang-Seo;Kim, Kee-Deog;Park, Hyok;Jeong, Ho-Gul;Lee, Sang-Chul
    • Imaging Science in Dentistry
    • /
    • v.37 no.4
    • /
    • pp.205-209
    • /
    • 2007
  • Purpose: To determine the physical properties of a newly developed cone beam computed tomography (CBCT). Materials and Methods: We measured and compared the imaging properties for the indirect-type flat panel detector (FPD) of a new CBCT and the single detector array (SDA) of conventional helical CT (CHCT). Results: First, the modulation transfer function (MTF) of the CBCT were superior to those of the CHCT. Second, the noise power spectrum (NPS) of the CBCT were worse than those of the CHCT. Third, detective quantum efficiency (DQE) of the indirect-type CBCT were worse than those of the CHCT at lower spatial frequencies, but were better at higher spatial frequencies. Although the comparison of contrast-to-noise ratio (CNR) was estimated in the limited range of tube current, CNR of CBCT were worse than those of CHCT. Conclusion: This study shows that the indirect-type FPD system may be useful as a CBCT detector because of high resolution.

  • PDF

EFFECTS OF WAVE-PARTICLE INTERACTIONS ON DIFFUSIVE SHOCK ACCELERATION AT SUPERNOVA REMNANTS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.46 no.1
    • /
    • pp.49-63
    • /
    • 2013
  • Nonthermal radiation from supernova remnants (SNRs) provides observational evidence and constraints on the diffusive shock acceleration (DSA) hypothesis for the origins of Galactic cosmic rays (CRs). Recently it has been recognized that a variety of plasma wave-particle interactions operate at astrophysical shocks and the detailed outcomes of DSA are governed by their complex and nonlinear interrelationships. Here we calculate the energy spectra of CR protons and electrons accelerated at Type Ia SNRs, using time-dependent, DSA simulations with phenomenological models for magnetic field amplification due to CR streaming instabilities, Alf$\acute{e}$enic drift, and free escape boundary. We show that, if scattering centers drift with the Alf$\acute{e}$en speed in the amplified magnetic fields, the CR energy spectrum is steepened and the acceleration efficiency is significantly reduced at strong CR modified SNR shocks. Even with fast Afv$\acute{e}$nic drift, DSA can still be efficient enough to develop a substantial shock precursor due to CR pressure feedback and convert about 20-30% of the SN explosion energy into CRs. Since the high energy end of the CR proton spectrum is composed of the particles that are injected in the early stages, in order to predict nonthermal emissions, especially in X-ray and ${\gamma}-ray$ bands, it is important to follow the time dependent evolution of the shock dynamics, CR injection process, magnetic field amplification, and particle escape. Thus it is crucial to understand the details of these plasma interactions associated with collisionless shocks in successful modeling of nonlinear DSA.

Infrared Supernova Remnants and Their Infrared to X-ray Flux Ratios

  • Koo, Bon-Chul;Lee, Jae-Joon;Seok, Ji-Yeon;Jeong, Il-Gyo;Kim, Hyun-Jeong
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.34.3-35
    • /
    • 2015
  • Recent high-resolution infrared space missions have revealed supernova remnants (SNRs) of diverse morphology in far infrared (FIR), often very different from their X-ray appearance. This suggests that the FIR emission from SNRs could be of different origins. For a sample of 20 Galactic SNRs, we examine the correlation between their FIR and X-ray properties and explore the origin of the FIR emission. We find that the SNRs with very different FIR and X-ray morphology have relatively large infrared-to-X-ray (IRX) flux ratios. We argue that the FIR emission in these SNRs is likely mainly from dust grains radiatively-heated by shock radiation. For SNRs with similar IR and X-ray morphology, the FIR emission of which is probably mostly from dust grains collisionally heated by hot plasma, we compare their IRX flux ratios with theoretical ratios from a model incorporating time-dependent dust destruction and non-equilibrium ionization cooling behind SNR shock, and discuss the implications of our result.

  • PDF