• Title/Summary/Keyword: high SNR

Search Result 674, Processing Time 0.034 seconds

Evaluation of Image Quality When Using Grid During Child Chest X-Ray Examination (소아 흉부검사 시 격자 사용에 따른 영상 화질 평가)

  • Jeung, Seung-Hun;Han, Beom-Hul;Jung, Hong-Ryang
    • Journal of radiological science and technology
    • /
    • v.40 no.3
    • /
    • pp.371-376
    • /
    • 2017
  • Since in case of children, they are sensitive to the radiation compared to the adult and the potential exposure damage lasts longer, the exposure dose should be managed better than for the adult. Therefore, this study was conducted to observe the change in the chest x-ray image by the use of grid, which eliminates the scattering rays but increases the exposure dose during the child chest x-ray examination. As a research method, SNR, CNR and V. Vuichi were measured at 100 cm and 180 cm with the grid varying the kVp to 70, 90 and 110. In addition, SNR, CNR and V. Vuichi were measured fixing 100 cm and 180cm without grid and varying the dose to 6, 8 and 10 mAs. In the results of measuring them by fixing kVp, SNR, VNR and V. Vuichi were represented high when FID is 100cm. And in the results of meaduring them varying mAs, SNR, VNR and V. Vuichi were represented high when FID is 100cm. Currently in our country, the chest x-ray examination is performed at 180 cm. However, as the image is measured high when FID is 100 cm, in case of child, FID is deemed to be 100 cm.

Preliminary Study of RF Surface Coil to Get High Resolution Skin Image (고해상도 피부영상을 얻기 위한 Surface Coil의 예비연구)

  • Woo, Dong-Cheol;Yoon, Seong-Ik;Yoon, Moon-Hyun;Choe, Bo-Young
    • Proceedings of the Korean Society of Medical Physics Conference
    • /
    • 2005.04a
    • /
    • pp.35-38
    • /
    • 2005
  • In our country, the skin image and MR Microscopy research has been processed but there were not their outstanding results. So this study start to improve the techniques can get high resolution skin images and to make RF surface coils. Volume coils are sometimes unavailable, or do not provide adequate RF power or SNR for some applications. In high resolution skin and tissue structure images current coils have a technical limitation. It is well known that standard single-loop surface coils, although offering high SNR characteristics, have poor B1 homogeneity. As the RF surface coil need change its geometry we get improved images. So, The magnetic field simulation that is first step to make and design RF surface coil will support reference data.

  • PDF

Usefulness of the High B-value DWI in Brain Tumors (뇌종양 확산강조영상에서 High B-value의 유용성 평가)

  • Kim, Jin-tae;Byun, Jae-Hu;Park, Yong-Seong;Lee, Rae-Gon;Hwang, Seon-Kwang
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.17 no.1
    • /
    • pp.33-41
    • /
    • 2015
  • This study attempts to examine the clinical usefulness of High b-value DWI (diffusion weighted imaging) for brain tumors with an edema. Subjects were seven patients selected from 65 patients who received an MRI scan for suspected encephalopathy and confirmed diagnosis at our hospital from February to July 2015 (male: 7, average age : 66 years old). As test equipment, 3.0T MR System (ACHIEVA Release, Philips, Best, The Netherlands) and 8Channel SENSE Head Coill were used. DWI checks on the use of the variable TR 5460ms, TE 132ms, Slice Thickness 4mm, gap 1mm, Slice number 29 is, 3D T1WI is TR 8.4ms, TE 3.9ms, matrix size $240{\times}240$, Slice can set 180 piecesIt was. b value of 0, 1,000, 2,000 s/mm2 with DWI acquisition and 3D T1WI enhancement five minutes after the Slice Thickness 3mm, gap 0mm to reconstruct the upper face axis (MPR TRA CE) was. As for the experiment, in b-value 1,000 and 2,000 images, SNR and the lesion at the lesion site and CNR in the normal site opposite to the lesion are measured. WW(window width) and WL(window level) are made equal in MRICro software, and the volume of the lesion is measured from each of b-value and MPR TRA CE image. Using SPSS ver. 1.8.0.0 Mann Whitney-test was analyzed for SNR and CNR, while Kruskal-Wallis test was analyzed for volume.

  • PDF

Performance Evaluation of Adaptive Modulation System with STTD (STTD 기법을 적용한 적응변조시스템의 성능 평가)

  • 강도욱;강희조
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.7 no.3
    • /
    • pp.411-416
    • /
    • 2003
  • In this paper, We analysed performance of adaptive modulation system with STTD. Transmission error of system is increased by ISI according to delay wave in wireless channel environment. Therefore, We analysed performance that it is applied adaptive modulation system with STTD to reduce ISI's effect. As a results, Data transmission of high speedㆍhigh quality could know possible by applying adaptive modulation system with STTD. Because of selected high modulation mode in low SNR.

HIGH QUALITY IMAGE ACQUSITION METHOD USING DUAL PANCHOMATIC CHANNEL

  • Chang, Young-Jun;Kim, Jung-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.203-206
    • /
    • 2007
  • The Space-borne electro-optical camera system has panchromatic redundant image channel as well as primary channel in order to increase reliability of satellite system. In most case redundant channel never been used during the whole mission period. Staggered array configuration using redundant image channel and new operation mode proposed which operates primary and redundant channel simultaneously. Without new hardware design, fast electronics and system complexity, we can get 1.414 times more fine GSD image of original system or we can get 1.414 times more SNR or High dynamic range imaging mode. In this paper we deal with several image quality improvement methods using dual panchromatic channel.

  • PDF

Optimal Design of a MEMS-type Piezoelectric Microphone (MEMS 구조 압전 마이크로폰의 최적구조 설계)

  • Kwon, Min-Hyeong;Ra, Yong-Ho;Jeon, Dae-Woo;Lee, Young-Jin
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.269-274
    • /
    • 2018
  • High-sensitivity signal-to-noise ratio (SNR) microphones are essentially required for a broad range of automatic speech recognition applications. Piezoelectric microphones have several advantages compared to conventional capacitor microphones including high stiffness and high SNR. In this study, we designed a new piezoelectric membrane structure by using the finite elements method (FEM) and an optimization technique to improve the sensitivity of the transducer, which has a high-quality AlN piezoelectric thin film. The simulation demonstrated that the sensitivity critically depends on the inner radius of the top electrode, the outer radius of the membrane, and the thickness of the piezoelectric film in the microphone. The optimized piezoelectric transducer structure showed a much higher sensitivity than that of the conventional piezoelectric transducer structure. This study provides a visible path to realize micro-scale high-sensitivity piezoelectric microphones that have a simple manufacturing process, wide range of frequency and low DC bias voltage.

The Study about Application of LEAP Collimator at Brain Diamox Perfusion Tomography Applied Flash 3D Reconstruction: One Day Subtraction Method (Flash 3D 재구성을 적용한 뇌 혈류 부하 단층 촬영 시 LEAP 검출기의 적용에 관한 연구: One Day Subtraction Method)

  • Choi, Jong-Sook;Jung, Woo-Young;Ryu, Jae-Kwang
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.102-109
    • /
    • 2009
  • Purpose: Flash 3D (pixon(R) method; 3D OSEM) was developed as a software program to shorten exam time and improve image quality through reconstruction, it is an image processing method that usefully be applied to nuclear medicine tomography. If perfoming brain diamox perfusion scan by reconstructing subtracted images by Flash 3D with shortened image acquisition time, there was a problem that SNR of subtracted image is lower than basal image. To increase SNR of subtracted image, we use LEAP collimators, and we emphasized on sensitivity of vessel dilatation than resolution of brain vessel. In this study, our purpose is to confirm possibility of application of LEAP collimators at brain diamox perfusion tomography, identify proper reconstruction factors by using Flash 3D. Materials and methods: (1) The evaluation of phantom: We used Hoffman 3D Brain Phantom with $^{99m}Tc$. We obtained images by LEAP and LEHR collimators (diamox image) and after 6 hours (the half life of $^{99m}Tc$: 6 hours), we use obtained second image (basal image) by same method. Also, we acquired SNR and ratio of white matters/gray matters of each basal image and subtracted image. (2) The evaluation of patient's image: We quantitatively analyzed patients who were examined by LEAP collimators then was classified as a normal group and who were examined by LEHR collimators then was classified as a normal group from 2008. 05 to 2009. 01. We evaluate the results from phantom by substituting factors. We used one-day protocol and injected $^{99m}Tc$-ECD 925 MBq at both basal image acquisition and diamox image acquisition. Results: (1) The evaluation of phantom: After measuring counts from each detector, at basal image 41~46 kcount, stress image 79~90 kcount, subtraction image 40~47 kcount were detected. LEAP was about 102~113 kcount at basal image, 188~210 kcount at stress image and 94~103 at subtraction image kcount were detected. The SNR of LEHR subtraction image was decreased than LEHR basal image about 37%, the SNR of LEAP subtraction image was decreased than LEAP basal image about 17%. The ratio of gray matter versus white matter is 2.2:1 at LEHR basal image and 1.9:1 at subtraction, and at LEAP basal image was 2.4:1 and subtraction image was 2:1. (2) The evaluation of patient's image: the counts acquired by LEHR collimators are about 40~60 kcounts at basal image, and 80~100 kcount at stress image. It was proper to set FWHM as 7 mm at basal and stress image and 11mm at subtraction image. LEAP was about 80~100 kcount at basal image and 180~200 kcount at stress image. LEAP images could reduce blurring by setting FWHM as 5 mm at basal and stress images and 7 mm at subtraction image. At basal and stress image, LEHR image was superior than LEAP image. But in case of subtraction image like a phantom experiment, it showed rough image because SNR of LEHR image was decreased. On the other hand, in case of subtraction LEAP image was better than LEHR image in SNR and sensitivity. In all LEHR and LEAP collimator images, proper subset and iteration frequency was 8 times. Conclusions: We could archive more clear and high SNR subtraction image by using proper filter with LEAP collimator. In case of applying one day protocol and reconstructing by Flash 3D, we could consider application of LEAP collimator to acquire better subtraction image.

  • PDF

Design of Digital PLL with Asymmetry Compensator in High Speed DVD Systems (고속 DVD 시스템에서 비대칭 신호 보정기와 결합한 Digital PLL 설계)

  • 김판수;고석준;최형진;이정현
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.12A
    • /
    • pp.2000-2011
    • /
    • 2001
  • In this Paper, we convert conventional low speed(1x, 6x) DVD systems designed by analog PLL(Phase Locked Loop) into digital PLL to operate at high speed systems flexibly, and present optimal DPLL model in high speed(20x) DVD systems. Especially, we focused on the design of DPLL that can overcome channel effects such as bulk delay, sampling clock frequency offset and asymmetry phenomenon in high speed DVD systems. First, the modified Early-Late timing error detector as digital timing recovery scheme is proposed. And the four-sampled compensation algorithm using zero crossing point as asymmetry compensator is designed to achieve high speed operation and strong reliability. We show that the proposed timing recovery algorithm provides enhanced performances in jitter valiance and SNR margin by 4 times and 3dB respectively. Also, the new four-sampled zero crossing asymmetry compensation algorithm provides 34% improvement of jitter performance, 50% reduction of compensation time and 2.0dB gain of SNR compared with other algorithms. Finally, the proposed systems combined with asymmetry compensator and DPLL are shown to provide improved performance of about 0.4dB, 2dB over the existing schemes by BER evaluation.

  • PDF

The Optimization of Reconstruction Method Reducing Partial Volume Effect in PET/CT 3D Image Acquisition (PET/CT 3차원 영상 획득에서 부분용적효과 감소를 위한 재구성법의 최적화)

  • Hong, Gun-Chul;Park, Sun-Myung;Kwak, In-Suk;Lee, Hyuk;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.1
    • /
    • pp.13-17
    • /
    • 2010
  • Purpose: Partial volume effect (PVE) is the phenomenon to lower the accuracy of image due to low estimate, which is to occur from PET/CT 3D image acquisition. The more resolution is declined and the lesion is small, the more it causes a big error. So that it can influence the test result. Studied the optimum image reconstruction method by using variation of parameter, which can influence the PVE. Materials and Methods: It acquires the image in each size spheres which is injected $^{18}F$-FDG to hot site and background in the ratio 4:1 for 10 minutes by using NEMA 2001 IEC phantom in GE Discovey STE 16. The iterative reconstruction is used and gives variety to iteration 2-50 times, subset number 1-56. The analysis's fixed region of interest in detail part of image and compute % difference and signal to noise ratio (SNR) using $SUV_{max}$. Results: It's measured that $SUV_{max}$ of 10 mm spheres, which is changed subset number to 2, 5, 8, 20, 56 in fixed iteration to times, SNR is indicated 0.19, 0.30, 0.40, 0.48, 0.45. As well as each sphere's of total SNR is measured 2.73, 3.38, 3.64, 3.63, 3.38. Conclusion: In iteration 6th to 20th, it indicates similar value in % difference and SNR ($3.47{\pm}0.09$). Over 20th, it increases the phenomenon, which is placed low value on $SUV_{max}$ through the influence of noise. In addition, the identical iteration, it indicates that SNR is high value in 8th to 20th in variation of subset number. Therefore, to reduce partial volume effect of small lesion, it can be declined the partial volume effect in iteration 6 times, subset number 8~20 times, considering reconstruction time.

  • PDF

A Study on the Change of Image Quality According to the Change of Tube Voltage in Computed Tomography Pediatric Chest Examination (전산화단층촬영 소아 흉부검사에서 관전압의 변화에 따른 화질변화에 관한 연구)

  • Kim, Gu;Kim, Gyeong Rip;Sung, Soon Ki;Kwak, Jong Hyeok
    • Journal of the Korean Society of Radiology
    • /
    • v.13 no.4
    • /
    • pp.503-508
    • /
    • 2019
  • In short a binary value according to a change in the tube voltage by using one of VOLUME AXIAL MODE of scanning techniques of chest CT image quality evaluation in order to obtain high image and to present the appropriate tube voltage. CT instruments were GE Revolution (GE Healthcare, Wisconsin USA) model and Phantom used Pediatric Whole Body Phantom PBU-70. The test method was examined in Volume Axial mode using the pediatric protocol used in the Y university hospital of mass-produced material. The tube voltage was set to 70kvp, 80kvp, 100kvp, and mAs was set to smart mA-ODM. The mean SNR difference of the heart was $-4.53{\pm}0.26$ at 70 kvp, $-3.34{\pm}0.18$ at 80 kvp, $-1.87{\pm}0.15$ at 100 kvp, and SNR at 70 kvp was about -2.66 higher than 100 kvp and statistically significant (p<0.05) In the Lung SNR mean difference analysis, $-78.20{\pm}4.16$ at 70 kvp, $-79.10{\pm}4.39$ at 80 kvp, $-77.43{\pm}4.72$ at 100 kvp, and SNR at 70 kvp at about -0.77 higher than 100 kvp were statistically significant. (p<0.05). Lung CNR mean difference was $73.67{\pm}3.95$ at 70 kvp, $75.76{\pm}4.25$ at 80 kvp, $75.57{\pm}4.62$ at 100 kvp and 20.9 CNR at 80 kvp higher than 70 kvp and statistically significant (p<0.05) At 100 kvp of tube voltage, the SNR was close to 1 while maintaining the quality of the heart image when 70 kvp and 80 kvp were compared. However, there is no difference in SNR between 70 kvp and 80 kvp, and 70 kvp can be used to reduce the radiation dose. On the other and, CNR showed an approximate value of 1 at 70 kvp. There is no difference between 80 kvp and 100 kvp. Therefore, 80 kvp can reduce the radiation dose by pediatric chest CT. In addition, it is possible to perform a scan with a short scan time of 0.3 seconds in the volume axial mode test, which is useful for pediatric patients who need to move or relax.