• Title/Summary/Keyword: hierarchical routing

Search Result 243, Processing Time 0.031 seconds

Packet Processing Analysis of OSPF Routing Protocol (OSPF라우팅 프로토콜의 패킷 처리 분석)

  • 최승한;주성순
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.477-480
    • /
    • 2000
  • Open Shortest Path First(OSPF) is a dynamic, hierarchical routing protocol designed to support routing in TCP/IP networks. Currently, OSPF is used as Interior Gateway Protocol(IGP) in many routers. In this paper, we analyze the variation of number of OSPF routing packets in case of changing the network configuration. The results show that the number of packets in case of adding new link increase five times than one in case of normal operation.

  • PDF

A New Low-Skew Clock Network Design Method (새로운 낮은 스큐의 클락 분배망 설계 방법)

  • 이성철;신현철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.43-50
    • /
    • 2004
  • The clock skew is one of the major constraints for high-speed operation of synchronous integrated circuits. In this paper, we propose a hierarchical partitioning based clock network design algorithm called Advanced Clock Tree Generation (ACTG). Especially new effective partitioning and refinement techniques have been developed in which the capacitance and edge length to each sink are considered from the early stage of clock design. Hierarchical structures obtained by parhtioning and refinement are utilized for balanced clock routing. We use zero skew routing in which Elmore delay model is used to estimate the delay. An overlap avoidance routing algorithm for clock tree generation is proposed. Experimental results show significant improvement over conventional methods.

A Cluster-based Routing Protocol with Energy Consumption Balance in Distributed Wireless Sensor Networks (분산 무선센서 네트워크의 클러스터-기반 에너지 소비 균형 라우팅 프로토콜)

  • Kim, Tae-Hyo;Ju, Yeon-Jeong;Oh, Ho-Suck;Kim, Min-Kyu;Jung, Yong-Bae
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.15 no.4
    • /
    • pp.155-161
    • /
    • 2014
  • In this paper, a cluster-based routing protocol in distributed sensor network is proposed, which enable the balanced energy consumption in the sensor nodes densely deployed in the sensor fields. This routing protocol is implemented based on clusters with hierarchical scheme. The clusters are formed by the closely located sensor nodes. A cluster node with maximum residual energy in the cluster, can be selected as cluster head node. In routing, one of the nodes in the intersection area between two clusters is selected as a relay-node and this method can extend the lifetime of all the sensor nodes in view of the balanced consumption of communication energy.

Efficient Detour routing path detection algorithm based on the hierarchical network structure analysis (계층적 네트웍 구조 분석 기반의 패킷우회 검출 알고리즘)

  • 김진천;이동근;이동현;최상복
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.65-69
    • /
    • 2001
  • Network Management become more and more important issue in the network environment in which many applications such as Mail, teleconferencing, WWW and database software are operated. It can be possible for The Bridge and flouter forwarding data to select next hop device which results in routing incorrect path from the viewpoint of network design. In this paper we address the problem of finding the detour routing path due to incorrect setting on routing devices. We propose the new algorithm for finding detour routing path based on hierarchical network structure analysis using information from SNMP MIB. To prove the correctness of the proposed algorithm we have done simulation with predefined data. Simulation results show that the algorithm finds detour path correctly

  • PDF

A Novel K-hop Cluster-based Ad hoc Routing Scheme with Delegation Functions (위임 기능을 이용한 새로운 K-hop 클러스터 기반 Ad hoc 라우팅 구조)

  • Kim Tae-yeon;Wang Ki-cheoul
    • Journal of Internet Computing and Services
    • /
    • v.5 no.5
    • /
    • pp.27-37
    • /
    • 2004
  • The existing ad hoc network protocols suffer the scalability problem due to the inherent characteristics of node mobility. Cluster-based routing protocols divide the member nodes into a set of clusters and perform a hierarchical routing between these clusters. This hierarchical feature help to improve the scalability of ad hoc network routing. However, previous k-hop cluster-based routing protocols face another problems, that is, control overhead of the cluster headers. This paper proposes a novel k-hop cluster-based routing scheme with delegation functions for mobile ad hoc networks. The scheme employs is based on tree topology to manage cluster members in effectively. The cluster headers do not manage the routing table for whole members, while the header keeps the routing table for its neighbor members and the member list for one hop over nodes within k-hop cluster. Then the in-between leveled nodes manage the nested nodes which is structured in the lower level. Therefore, the proposed mechanism can reduce some control overhead of the cluster leaders.

  • PDF

Energy-Aware Routing Algorithm using Backup Route for Ad hoc Network (애드혹 네트워크에서의 보조 경로를 이용한 에너지 인식 라우팅 알고리즘)

  • Jung Se-Won;Lee Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-32
    • /
    • 2005
  • This paper proposes a new algorithm for the energy constraint ad-hoc network which efficiently spread the energy usage over the network through the backup route scheme in order to increase the network lifetime. Recently, the various energy-efficient routing algorithms based on On-demanding method are proposed. Among them, PSR(Power-aware Source Routing) increased the network lifetime through the periodical route alternation depended on the use of the battery while DSR(Dynamice Source Routing) uses only the route selected during the route discovery phase. But PSR has a problem that it increases the route overhead because of the frequent flooding for the route alternation. For solving this problem, we propose HPSR(Hierarchical Power-aware Source Routing) which uses the backup route set during the route discovery in order to alternation the route without the flooding. HPSR increases the network lifetime due to the frequent route alternation using backup route while it decreases the routing overhead due to the reduced flooding. In this paper, we also prove the performance of HPSR through the simulation using OPNET.

Performance Analysis of Hierarchical Routing Protocols for Sensor Network (센서 네트워크를 위한 계층적 라우팅 프로토콜의 성능 분석)

  • Seo, Byung-Suk;Yoon, Sang-Hyun;Kim, Jong-Hyun
    • Journal of the Korea Society for Simulation
    • /
    • v.21 no.4
    • /
    • pp.47-56
    • /
    • 2012
  • In this study, we use a parallel simulator PASENS(Parallel SEnsor Network Simulator) to predict power consumption and data reception rate of the hierarchical routing protocols for sensor network - LEACH (Low-Energy Adaptive Clustering Hierarchy), TL-LEACH (Two Level Low-Energy Adaptive Clustering Hierarchy), M-LEACH (Multi hop Low-Energy Adaptive Clustering Hierarchy) and LEACH-C (LEACH-Centralized). According to simulation results, M-LEACH routing protocol shows the highest data reception rate for the wider area, since more sensor nodes are involved in the data transmission. And LEACH-C routing protocol, where the sink node considers the entire node's residual energy and location to determine the cluster head, results in the most efficient energy consumption and in the narrow area needed long life of sensor network.

Distance Aware Intelligent Clustering Protocol for Wireless Sensor Networks

  • Gautam, Navin;Pyun, Jae-Young
    • Journal of Communications and Networks
    • /
    • v.12 no.2
    • /
    • pp.122-129
    • /
    • 2010
  • Energy conservation is one of the most important issues for evaluating the performance of wireless sensor network (WSN) applications. Generally speaking, hierarchical clustering protocols such as LEACH, LEACH-C, EEEAC, and BCDCP are more efficient in energy conservation than flat routing protocols. However, these typical protocols still have drawbacks of unequal and high energy depletion in cluster heads (CHs) due to the different transmission distance from each CH to the base station (BS). In order to minimize the energy consumption and increase the network lifetime, we propose a new hierarchical routing protocol, distance aware intelligent clustering protocol (DAIC), with the key concept of dividing the network into tiers and selecting the high energy CHs at the nearest distance from the BS. We have observed that a considerable amount of energy can be conserved by selecting CHs at the nearest distance from the BS. Also, the number of CHs is computed dynamically to avoid the selection of unnecessarily large number of CHs in the network. Our simulation results showed that the proposed DAIC outperforms LEACH and LEACH-C by 63.28% and 36.27% in energy conservation respectively. The distance aware CH selection method adopted in the proposed DAIC protocol can also be adapted to other hierarchical clustering protocols for the higher energy efficiency.

Energy Efficient Vice Low Adaptive Hierarchy Clustering Protocol:EEV-LEACH

  • Amira Bendjeddou;Mouna Hemici
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.10
    • /
    • pp.32-42
    • /
    • 2024
  • For many sensor network applications, minimizing the energy consumed as well as extending the network lifetime are the most important objectives to be achieved, these objectives have pushed the scientific community to propose new solutions to minimize the total energy consumed by the sensors without degrading the network performances, amongst the proposed solutions, the clustering techniques. In this work we focus on hierarchical routing protocols, more precisely clustering in wireless sensor networks. We propose an energy-efficient hierarchical routing protocol for WSNs called EEV-LEACH (Energy Efficient Vice Low Adaptive Clustering Hierarchy), which represents a new variant of the LEACH protocol. Our energy-efficient protocol aims to maximize the lifetime of the network, by minimizing the energy consumption of each sensors nodes and cluster-heads. Minimizing the wasted energy by each sensor node is achieved by minimizing the periodic selection of CHs in each round. Minimizing the periodic selection of CHs allows decreasing the association messages exchanged between the CH and the nodes, so the consumed energy and overhead are minimized. EEV-LEACH aims also to minimize the energy consumed by the cluster-heads (CHs) by using vice CHs , which will share the workload with the CHs in an alternative way. The performances of our protocol EEV-LEACH is compared to, LEACH, LEACH-S and TL-LEACH by using MATLAB simulator, the results show that EEV-LEACH protocol extend the network lifetime and it minimizes the overall overhead versus LEACH, LEACH-S and TL-LEACH protocols.

Hierarchical Odd Network(HON): A New Interconnection Network based on Odd Network (계층적 오드 연결망(HON) : 오드 연결망을 기반으로 하는 새로운 상호연결망)

  • Kim, Jong-Seok;Lee, Hyeong-Ok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.36 no.5
    • /
    • pp.344-350
    • /
    • 2009
  • In this paper, we propose a new interconnection network, hierarchical odd network HON($C_d,C_d$), which used the odd network as basic modules. We investigate various topological properties of HON($C_d,C_d$), including connectivity, routing algorithm, diameter and broadcasting. We show that HON($C_d,C_d$) outperforms the three networks, i.e. the odd network, HCN(m,m), and HFN(m,m).