• Title/Summary/Keyword: hierarchical analysis method

Search Result 697, Processing Time 0.033 seconds

Hierarchical Timing Analysis considering Global False Path

  • Sunik Heo;Kim, Juho
    • Proceedings of the IEEK Conference
    • /
    • 2002.07a
    • /
    • pp.235-237
    • /
    • 2002
  • As the integrated circuit technology gets developed, a circuit size of more than thousands of transistors becomes normal. A hierarchical design is unavoidable due to a huge circuit size. It is important how we can consider hierarchical structure in circuit delay analysis. In this paper we present an accurate method to analyze the delay of circuit with hierarchical structure. Adding the notion of global false path to the hierarchical timing analysis performs more accurate timing analysis.

  • PDF

Sheet Forming Anlysis by Using Hierarchical Contact Searching Method (계층적 접촉 탐색방법을 이용한 박판성형 공정해석)

  • 김일권;김용한
    • Transactions of Materials Processing
    • /
    • v.9 no.3
    • /
    • pp.274-283
    • /
    • 2000
  • A dynamic explicit finite element code for simulating sheet forming processes has been developed. The code utilizes the discrete Kirchhoff shell element and contact force is treated by a conventional penalty method. In order to reduce the computational cost, a new and robust contact searching algorithm has been developed and implemented into the code. In the method, a hierarchical structure of tool segments is built for each tool at the initial stage of the analysis. hierarchical structure is built in a way to divide a box to 8 sub-boxes, 2 in each direction, until the lowest level of the hierarchical structure contains exactly one segment of the tool or empty. Then at each time step, contact is checked from the box to sub-boxes hierarchically for each node. Comparisons of computational results of various examples with the existing ones show the validity of the method.

  • PDF

Hierarchical Bayes Analysis of Smoking and Lung Cancer Data

  • Oh, Man-Suk;Park, Hyun-Jin
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.115-128
    • /
    • 2002
  • Hierarchical models are widely used for inference on correlated parameters as a compromise between underfitting and overfilling problems. In this paper, we take a Bayesian approach to analyzing hierarchical models and suggest a Markov chain Monte Carlo methods to get around computational difficulties in Bayesian analysis of the hierarchical models. We apply the method to a real data on smoking and lung cancer which are collected from cities in China.

An Agglomerative Hierarchical Variable-Clustering Method Based on a Correlation Matrix

  • Lee, Kwangjin
    • Communications for Statistical Applications and Methods
    • /
    • v.10 no.2
    • /
    • pp.387-397
    • /
    • 2003
  • Generally, most of researches that need a variable-clustering process use an exploratory factor analysis technique or a divisive hierarchical variable-clustering method based on a correlation matrix. And some researchers apply a object-clustering method to a distance matrix transformed from a correlation matrix, though this approach is known to be improper. On this paper an agglomerative hierarchical variable-clustering method based on a correlation matrix itself is suggested. It is derived from a geometric concept by using variate-spaces and a characterizing variate.

Hierarchical Bayes Analysis of Longitudinal Poisson Count Data

  • Kim, Dal-Ho;Shin, Im-Hee;Choi, In-Sun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.13 no.2
    • /
    • pp.227-234
    • /
    • 2002
  • In this paper, we consider hierarchical Bayes generalized linear models for the analysis of longitudinal count data. Specifically we introduce the hierarchical Bayes random effects models. We discuss implementation of the Bayes procedures via Markov chain Monte Carlo (MCMC) integration techniques. The hierarchical Baye method is illustrated with a real dataset and is compared with other statistical methods.

  • PDF

Results of Discriminant Analysis with Respect to Cluster Analyses Under Dimensional Reduction

  • Chae, Seong-San
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.2
    • /
    • pp.543-553
    • /
    • 2002
  • Principal component analysis is applied to reduce p-dimensions into q-dimensions ( $q {\leq} p$). Any partition of a collection of data points with p and q variables generated by the application of six hierarchical clustering methods is re-classified by discriminant analysis. From the application of discriminant analysis through each hierarchical clustering method, correct classification ratios are obtained. The results illustrate which method is more reasonable in exploratory data analysis.

HisCoM-PAGE: software for hierarchical structural component models for pathway analysis of gene expression data

  • Mok, Lydia;Park, Taesung
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.45.1-45.3
    • /
    • 2019
  • To identify pathways associated with survival phenotypes using gene expression data, we recently proposed the hierarchical structural component model for pathway analysis of gene expression data (HisCoM-PAGE) method. The HisCoM-PAGE software can consider hierarchical structural relationships between genes and pathways and analyze multiple pathways simultaneously. It can be applied to various types of gene expression data, such as microarray data or RNA sequencing data. We expect that the HisCoM-PAGE software will make our method more easily accessible to researchers who want to perform pathway analysis for survival times.

A Bayesian Method to Semiparametric Hierarchical Selection Models (준모수적 계층적 선택모형에 대한 베이지안 방법)

  • 정윤식;장정훈
    • The Korean Journal of Applied Statistics
    • /
    • v.14 no.1
    • /
    • pp.161-175
    • /
    • 2001
  • Meta-analysis refers to quantitative methods for combining results from independent studies in order to draw overall conclusions. Hierarchical models including selection models are introduced and shown to be useful in such Bayesian meta-analysis. Semiparametric hierarchical models are proposed using the Dirichlet process prior. These rich class of models combine the information of independent studies, allowing investigation of variability both between and within studies, and weight function. Here we investigate sensitivity of results to unobserved studies by considering a hierachical selection model with including unknown weight function and use Markov chain Monte Carlo methods to develop inference for the parameters of interest. Using Bayesian method, this model is used on a meta-analysis of twelve studies comparing the effectiveness of two different types of flouride, in preventing cavities. Clinical informative prior is assumed. Summaries and plots of model parameters are analyzed to address questions of interest.

  • PDF

Microarray data analysis using relative hierarchical clustering (상대적 계층적 군집 방법을 이용한 마이크로어레이 자료의 군집분석)

  • Woo, Sook Young;Lee, Jae Won;Jhun, Myoungshic
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.5
    • /
    • pp.999-1009
    • /
    • 2014
  • Hierarchical clustering analysis helps easily exploring massive microarray data and understanding biological phenomena with dendrogram. But, because hierarchical clustering algorithms only consider the absolute similarity, it is difficult to illustrate a relative dissimilarity, which consider not only the distance between a pair of clusters, but also how distant are they from the rest of the clusters. In this study, we introduced the relative hierarchical clustering method proposed by Mollineda and Vidal (2000) and compared hierarchical clustering method and relative hierarchical method using the simulated data and the real data in the various situations. The evaluation of the quality of two hierarchical methods was performed using percentage of incorrectly grouped points (PIGP), homogeneity and separation.