• Title/Summary/Keyword: hierarchica model

Search Result 1, Processing Time 0.014 seconds

Bayesian estimation for finite population proportions in multinomial data

  • Kwak, Sang-Gyu;Kim, Dal-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.23 no.3
    • /
    • pp.587-593
    • /
    • 2012
  • We study Bayesian estimates for finite population proportions in multinomial problems. To do this, we consider a three-stage hierarchical Bayesian model. For prior, we use Dirichlet density to model each cell probability in each cluster. Our method does not require complicated computation such as Metropolis-Hastings algorithm to draw samples from each density of parameters. We draw samples using Gibbs sampler with grid method. We apply this algorithm to a couple of simulation data under three scenarios and we estimate the finite population proportions using two kinds of approaches We compare results with the point estimates of finite population proportions and their standard deviations. Finally, we check the consistency of computation using differen samples drawn from distinct iterates.