• 제목/요약/키워드: hexanoylthiocholine

검색결과 2건 처리시간 0.118초

아세틸콜린에스터라제 촉매에 의한 티오에스테르의 가수분해 반응 메카니즘 연구 (Reaction Mechanism of Acetylcholinesterase Catalyzed Hydrolysis of Thiocholine Esters)

  • 정대일;최순규;이용균;박유미;곽문정;신영주;최병욱;이봉호;한정태
    • 생명과학회지
    • /
    • 제12권1호
    • /
    • pp.32-42
    • /
    • 2002
  • 합성된 hexanoylthiocholine을 기질로 하여 butyrylcholinesterase와의 반응을 연구하였다. 기질의 농도 변화에 따른 초기반응속도 관찰을 통해 아실기의 탄소수가 증가함에 따라 반응성은 감소하나 $K_{m}$ 값은 0.140(mM)으로 더 강한 ES 복합체를 형성함을 알 수 있었다. Hexanoylthio-choline의 촉매화된 acetylcholinesterase 가수분해에 대한 pH-V/K profile에서 p $K_{a}$ 값 4.974$\pm$0.02을 얻었다. 이는 최근 문헌의 보고와 상통하는 것으로 p $K_{a}$ =6.2~6.4를 갖는 잔류물의 기본형에 활성이 의존하는 것으로부터 하나의 잔류물 또는 p $K_{a}$ =4.7~5.0을 갖는 잔류물들의 촉매작용으로 계통적인 자리밀림을 보여준다. 이는 촉매화된 BChE의 활성영역 esteratic site 주변에 긴 사슬 아실기의 가수분해에 관여하는 새로운 활성영역이 존재함을 밝히는 증거이다. 분자 조형은 기질의 아실기의 탄소수에 따라 acetylcholinesterase에 의해 표현되어지는 반응과정의 변화의 합리성을 제공한다. 본 연구에서는 한국과학기술원 도핑컨트롤센터와 연계하여 acetylcholinesterase와 기질인 acylthiocholine과의 입체적으로 둘러싸인 acyl-binding site를 분자 조형하고자 노력 중에 있다.

Acetylcholinesterase(AChE)-Catalyzed Hydrolysis of Long-Chain Thiocholine Esters: Shift to a New Chemical Mechanism

  • Jung, Dai-Il;Shin, Young-Ju;Lee, Eun-Seok;Moon, Tae-sung;Yoon, Chang-No;Lee, Bong-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권1호
    • /
    • pp.65-69
    • /
    • 2003
  • The kinetic and chemical mechanisms of AChE-catalyzed hydrolysis of short-chain thiocholine esters are relatively well documented. Up to propanoylthiocholine (PrTCh) the chemical mechanism is general acid-base catalysis by the active site catalytic triad. The chemical mechanism for the enzyme-catalyzed butyrylthiocholine(BuTCh) hydrolysis shifts to a parallel mechanism in which general base catalysis by E199 of direct water attack to the carbonyl carbon of the substrate. [Selwood, T., et al. J. Am. Chem. Soc. 1993, 115, 10477- 10482] The long chain thiocholine esters such as hexanoylthiocholine (HexTCh), heptanoylthiocholine (HepTCh), and octanoylthiocholine (OcTCh) are hydrolyzed by electric eel acetylcholinesterase (AChE). The kinetic parameters are determined to show that these compounds have a lower Michaelis constant than BuTCh and the pH-rate profile showed that the mechanism is similar to that of BuTCh hydrolysis. The solvent isotope effect and proton inventory of AChE-catalyzed hydrolysis of HexTCh showed that one proton transfer is involved in the transition state of the acylation stage. The relationship between the dipole moment and the Michaelis constant of the long chain thiocholine esters showed that the dipole moment is the most important factor for the binding of a substrate to the enzyme active site.