• Title/Summary/Keyword: heuristic optimization algorithms

Search Result 191, Processing Time 0.022 seconds

Colliding bodies optimization for size and topology optimization of truss structures

  • Kaveh, A.;Mahdavi, V.R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.847-865
    • /
    • 2015
  • This paper presents the application of a recently developed meta-heuristic algorithm, called Colliding Bodies Optimization (CBO), for size and topology optimization of steel trusses. This method is based on the one-dimensional collisions between two bodies, where each agent solution is considered as a body. The performance of the proposed algorithm is investigated through four benchmark trusses for minimum weight with static and dynamic constraints. A comparison of the numerical results of the CBO with those of other available algorithms indicates that the proposed technique is capable of locating promising solutions using lesser or identical computational effort, with no need for internal parameter tuning.

Gamma ray interactions based optimization algorithm: Application in radioisotope identification

  • Ghalehasadi, Aydin;Ashrafi, Saleh;Alizadeh, Davood;Meric, Niyazi
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3772-3783
    • /
    • 2021
  • This work proposes a new efficient meta-heuristic optimization algorithm called Gamma Ray Interactions Based Optimization (GRIBO). The algorithm mimics different energy loss processes of a gamma-ray photon during its passage through a matter. The proposed novel algorithm has been applied to search for the global minima of 30 standard benchmark functions. The paper also considers solving real optimization problem in the field of nuclear engineering, radioisotope identification. The results are compared with those obtained by the Particle Swarm Optimization, Genetic Algorithm, Gravitational Search Algorithm and Grey Wolf Optimizer algorithms. The comparisons indicate that the GRIBO algorithm is able to provide very competitive results compared to other well-known meta-heuristics.

Genetic algorithms for optimization : a case study of machine-part group formation problems (기계-부품군 형성문제의 사례를 통한 유전 알고리즘의 최적화 문제에의 응용)

  • 한용호;류광렬
    • Korean Management Science Review
    • /
    • v.12 no.2
    • /
    • pp.105-127
    • /
    • 1995
  • This paper solves different machine-part group formation (MPGF) problems using genetic algorithms to demonstrate that it can be a new robust alternative to the conventional heuristic approaches for optimization problems. We first give an overview of genetic algorithms: Its principle, various considerations required for its implementation, and the method for setting up parameter values are explained. Then, we describe the MPGF problem which are critical to the successful operation of cellular manufacturing or flexible manufacturing systems. We concentrate on three models of the MPGF problems whose forms of the objective function and/or constraints are quite different from each other. Finally, numerical examples of each of the models descibed above are solved by using genetic algorithms. The result shows that the solutions derived by genetic algorithms are comparable to those obtained through problem-specific heuristic methods.

  • PDF

Application of Genetic and Local Optimization Algorithms for Object Clustering Problem with Similarity Coefficients (유사성 계수를 이용한 군집화 문제에서 유전자와 국부 최적화 알고리듬의 적용)

  • Yim, Dong-Soon;Oh, Hyun-Seung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.29 no.1
    • /
    • pp.90-99
    • /
    • 2003
  • Object clustering, which makes classification for a set of objects into a number of groups such that objects included in a group have similar characteristic and objects in different groups have dissimilar characteristic each other, has been exploited in diverse area such as information retrieval, data mining, group technology, etc. In this study, an object-clustering problem with similarity coefficients between objects is considered. At first, an evaluation function for the optimization problem is defined. Then, a genetic algorithm and local optimization technique based on heuristic method are proposed and used in order to obtain near optimal solutions. Solutions from the genetic algorithm are improved by local optimization techniques based on object relocation and cluster merging. Throughout extensive experiments, the validity and effectiveness of the proposed algorithms are tested.

Basic Study on Spatial Optimization Model for Sustainability using Genetic Algorithm - Based on Literature Review - (유전알고리즘을 이용한 지속가능 공간최적화 모델 기초연구 - 선행연구 분석을 중심으로 -)

  • Yoon, Eun-Joo;Lee, Dong-Kun
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.20 no.6
    • /
    • pp.133-149
    • /
    • 2017
  • As cities face increasing problems such as aging, environmental pollution and growth limits, we have been trying to incorporate sustainability into urban planning and related policies. However, it is very difficult to generate a 'sustainable spatial plans' because there are trade-offs among environmental, society, and economic values. This is a kind of non-linear problem, and has limitations to be solved by existing qualitative expert knowledge. Many researches from abroad have used the meta heuristic optimization algorithms such as Genetic Algorithms(GAs), Simulated Annealing(SA), Ant Colony Optimization(ACO) and so on to synthesize competing values in spaces. GAs is the most frequently applied theory and have been known to produce 'good-enough plans' in a reasonable time. Therefore we collected the research on 'spatial optimization model based GAs' and analyzed in terms of 'study area', 'optimization objective', 'fitness function', and 'effectiveness/efficiency'. We expect the results of this study can suggest that 'what problems the spatial optimization model can be applied to' and 'linkage possibility with existing planning methodology'.

Henry gas solubility optimization for control of a nuclear reactor: A case study

  • Mousakazemi, Seyed Mohammad Hossein
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.940-947
    • /
    • 2022
  • Meta-heuristic algorithms have found their place in optimization problems. Henry gas solubility optimization (HGSO) is one of the newest population-based algorithms. This algorithm is inspired by Henry's law of physics. To evaluate the performance of a new algorithm, it must be used in various problems. On the other hand, the optimization of the proportional-integral-derivative (PID) gains for load-following of a nuclear power plant (NPP) is a good challenge to assess the performance of HGSO. Accordingly, the power control of a pressurized water reactor (PWR) is targeted, based on the point kinetics model with six groups of delayed-neutron precursors. In any optimization problem based on meta-heuristic algorithms, an efficient objective function is required. Therefore, the integral of the time-weighted square error (ITSE) performance index is utilized as the objective (cost) function of HGSO, which is constrained by a stability criterion in steady-state operations. A Lyapunov approach guarantees this stability. The results show that this method provides superior results compared to an empirically tuned PID controller with the least error. It also achieves good accuracy compared to an established GA-tuned PID controller.

Developing Novel Algorithms to Reduce the Data Requirements of the Capture Matrix for a Wind Turbine Certification (풍력 발전기 평가를 위한 수집 행렬 데이터 절감 알고리즘 개발)

  • Lee, Jehyun;Choi, Jungchul
    • New & Renewable Energy
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 2020
  • For mechanical load testing of wind turbines, capture matrix is constructed for various range of wind speeds according to the international standard IEC 61400-13. The conventional method wastes considerable amount of data by its invalid data policy -segment data into 10 minutes then remove invalid ones. Previously, we have suggested an alternative way to save the total amount of data to build a capture matrix, but the efficient selection of data has been still under question. The paper introduces optimization algorithms to construct capture matrix with less data. Heuristic algorithm (simple stacking and lowest frequency first), population method (particle swarm optimization) and Q-Learning accompanied with epsilon-greedy exploration are compared. All algorithms show better performance than the conventional way, where the distribution of enhancement was quite diverse. Among the algorithms, the best performance was achieved by heuristic method (lowest frequency first), and similarly by particle swarm optimization: Approximately 28% of data reduction in average and more than 40% in maximum. On the other hand, unexpectedly, the worst performance was achieved by Q-Learning, which was a promising candidate at the beginning. This study is helpful for not only wind turbine evaluation particularly the viewpoint of cost, but also understanding nature of wind speed data.

A New Optimization System for Designing Broadband Convergence Network Access Networks (Broadband Convergence Network 가입자 망 설계 시스템 연구)

  • Lee, Young-Ho;Jung, Jin-Mo;Kim, Young-Jin;Lee, Sun-Suk;Park, No-Ik;kang, Kuk-Chang
    • Korean Management Science Review
    • /
    • v.23 no.2
    • /
    • pp.161-174
    • /
    • 2006
  • In this paper, we consider a network optimization problem arising from the deployment of BcN access network. BcN convergence services requires that access networks satisfy QoS meausres. BcN services have two types of traffics : stream traffic and elastic traffic. Stream traffic uses blocking probability as a QoS measure, while elastic traffic uses delay factor as a QoS measure. Incorporating the QoS requirements, we formulate the problem as a nonlinear mixed-integer Programming model. The Proposed model seeks to find a minimum cost dimensioning solution, while satisfying the QoS requirement. We propose two local search heuristic algorithms for solving the problem, and develop a network design system that implements the developed heuristic algorithms. We demonstrate the computational efficacy of the proposed algorithm by solving a realistic network design problem.

Power System State Estimation Using Parallel PSO Algorithm based on PC cluster (PC 클러스터 기반 병렬 PSO 알고리즘을 이용한 전력계통의 상태추정)

  • Jeong, Hee-Myung;Park, June-Ho;Lee, Hwa-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.303-304
    • /
    • 2008
  • For the state estimation problem, the weighted least squares (WLS) method and the fast decoupled method are widely used at present. However, these algorithms can converge to local optimal solutions. Recently, modern heuristic optimization methods such as Particle Swarm Optimization (PSO) have been introduced to overcome the disadvantage of the classical optimization problem. However, heuristic optimization methods based on populations require a lengthy computing time to find an optimal solution. In this paper, we used PSO to search for the optimal solution of state estimation in power systems. To overcome the shortcoming of heuristic optimization methods, we proposed parallel processing of the PSO algorithm based on the PC cluster system. the proposed approach was tested with the IEEE-118 bus systems. From the simulation results, we found that the parallel PSO based on the PC cluster system can be applicable for power system state estimation.

  • PDF

A new hybrid optimization algorithm based on path projection

  • Gharebaghi, Saeed Asil;Ardalan Asl, Mohammad
    • Structural Engineering and Mechanics
    • /
    • v.65 no.6
    • /
    • pp.707-719
    • /
    • 2018
  • In this article, a new method is introduced to improve the local search capability of meta-heuristic algorithms using the projection of the path on the border of constraints. In a mathematical point of view, the Gradient Projection Method is applied through a new approach, while the imposed limitations are removed. Accordingly, the gradient vector is replaced with a new meta-heuristic based vector. Besides, the active constraint identification algorithm, and the projection method are changed into less complex approaches. As a result, if a constraint is violated by an agent, a new path will be suggested to correct the direction of the agent's movement. The presented procedure includes three main steps: (1) the identification of the active constraint, (2) the neighboring point determination, and (3) the new direction and step length. Moreover, this method can be applied to some meta-heuristic algorithms. It increases the chance of convergence in the final phase of the search process, especially when the number of the violations of the constraints increases. The method is applied jointly with the authors' newly developed meta-heuristic algorithm, entitled Star Graph. The capability of the resulted hybrid method is examined using the optimal design of truss and frame structures. Eventually, the comparison of the results with other meta-heuristics of the literature shows that the hybrid method is successful in the global as well as local search.