• 제목/요약/키워드: heterotrophic nitrification

검색결과 21건 처리시간 0.027초

클로라민 소독에 의한 종속영양세균과 질산화세균의 불활성화 및 재성장 억제 (The Inactivation and Microbial Regrowth Inhibition of Heterotrophic and Nitrifying Bacteria by Chloramination)

  • 조관형;김평청;우달식;조영태
    • 한국환경과학회지
    • /
    • 제10권3호
    • /
    • pp.247-252
    • /
    • 2001
  • This study was performed to evaluate the inactivation and microbial regrowth of heterotrophic and nitrifying bacteria using chloramine as a secondary disinfectant for drinding water distribution system. Three sets of the three reactors filled with the $Cl_2/NH_3-N$ ratio of 3:1, 4:1, and 5:1 were used in these experiments. Chloramine concentration were applied to each set of the reactors with $1mg/\ell$,\;2mg/\ell\;and\;3mg/\ell$, respectively. For the set with elapsed time and reached to zero level after 7 days. Heterotrophic bacteria remarkably increased and nitrification through the experimenatal period (21 day). Furthermore the regrowth of heterotrophic bacteria and nitrification were not found. More than $2mg/\ell$ of chloramine with $Cl_2/NH_3-N$ ratio of 3:1, the nitrification could be inhibited by 2 days of contact time.

  • PDF

부착성 미생물을 이용한 질산화 및 탈질특성에 관한 연구 (Study on the Characteristics of Nitrification and Denitrification using Attached Microorganism)

  • 권문선;이의신
    • 상하수도학회지
    • /
    • 제8권3호
    • /
    • pp.19-25
    • /
    • 1994
  • In this research, characteristics of nitrification and denitrification using the microorganism attached on sponge and plates were examined. The denitrification and nitrification performance were investigated under the anaerobic and aerobic condition for about 2 months. Because the basins of denitrification and nitrification were connected in series, wastewater was flowed from denitrification basin to nitrification one. The 90% of influent flowrate was returned from nitrification basin to denitrification one. Most of organic material was removed in nitrification basin, wherease the only exact amount of organics required in denitrification process was removed in denitrification one. This experiment resulted in that heterotrophic bacteria existing in aerobic basin governed the removal efficiency of organic compounds. In case the influent BOD concentration into nitrification basin was 80mg/l, it did not affect to accumulation of nitrifying bacteria, the balance of heterotrophic bacteria was proved to be an important factor in nitrification/denitrification method such as anaerobic and aerobic cycling type.

  • PDF

종속영양 질산화- 호기적탈질 세균 Stenotrophomonas sp. CW-4Y의 분리와 질소제거 특성 (Isolation and Nitrogen Removal Characteristics of Heterotrophic Nitrification-Aerobic Denitrifying Bacteria, Stenotrophomonas sp. CW-4Y)

  • 이은영;이창원
    • KSBB Journal
    • /
    • 제29권1호
    • /
    • pp.72-80
    • /
    • 2014
  • CW-4Y was identified as Stenotrophomonas sp. by morphological and physiological characteristics, and phylogenetic analysis of its 16S rDNA gene sequence. Nitrogen removal by CW-4Y was analyzed in relation to the ammonium concentration, presence of organic carbon, carbon source, and carbon-to-nitrogen ratio (C/N). Stenotrophomonas CW-4Y has heterotrophic nitrification and aerobic denitrification abilities. Stenotrophomonas CW-4Y utilized only glucose as carbon sources, and heterotrophic nitrification and aerobic denitrification were observed regardless of the type of nitrogen source. The maximum ammonium removal rate of CW-4Y was 80 $mg-N{\cdot}L^{-1}{\cdot}d^{-1}$ and its denitrification rate of 192 $mg-N{\cdot}L^{-1}{\cdot}d^{-1}$ at $NO_3{^-}-N$ (about 280 ppm) in shake culture experiments at a C/N ratio of about 15 was about 30 times higher than those of other bacteria with the same ability.

Kinetics of nitrification and acrylamide biodegradation by Enterobacter aerogenes and mixed culture bacteria in sequencing batch reactor wastewater treatment systems

  • Madmanang, Romsan;Jangkorn, Siriprapha;Charoenpanich, Jittima;Sriwiriyarat, Tongchai
    • Environmental Engineering Research
    • /
    • 제24권2호
    • /
    • pp.309-317
    • /
    • 2019
  • This study evaluated the kinetics of acrylamide (AM) biodegradation by mixed culture bacteria and Enterobacter aerogenes (E. aerogenes) in sequencing batch reactor (SBR) systems with AQUASIM and linear regression. The zero-order, first-order, and Monod kinetic models were used to evaluate the kinetic parameters of both autotrophic and heterotrophic nitrifications and both AM and chemical oxygen demand (COD) removals at different AM concentrations of 100, 200, 300, and 400 mg AM/L. The results revealed that both autotrophic and heterotrophic nitrifications and both AM and COD removals followed the Monod kinetics. High AM loadings resulted in the transformation of Monod kinetics to the first-order reaction for AM and COD removals as the results of the compositions of mixed substrates and the inhibition of the free ammonia nitrogen (FAN). The kinetic parameters indicated that E. aerogenes degraded AM and COD at higher rates than mixed culture bacteria. The FAN from the AM biodegradation increased both heterotrophic and autotrophic nitrification rates at the AM concentrations of 100-300 mg AM/L. At higher AM concentrations, the FAN accumulated in the SBR system inhibited the autotrophic nitrification of mixed culture bacteria. The accumulation of intracellular polyphosphate caused the heterotrophic nitrification of E. aerogenes to follow the first-order approximation.

Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화 (Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13)

  • 정택경;라창식;조기성;송홍규
    • 미생물학회지
    • /
    • 제52권2호
    • /
    • pp.166-174
    • /
    • 2016
  • 호기적 조건에서 질산화와 탈질화를 동시에 진행하는 Alcaligenes faecalis NS13 균주를 분리하여 다양한 특성을 파악하였다. 이 균주는 $15-37^{\circ}C$ 온도에서 생장할 수 있으며 암모니움 산화율이 높고 고농도의 암모니움 환경에서도 생장이 저해되지 않고 초기 암모니움 농도 증가에 따라 제거량이 증가하였다. pH와 염분농도에 대해서도 내성 범위가 넓어 암모니움 산화가 영향을 받지 않았다. 질산화에 이어진 탈질화로 인해 질산염의 축적이 일어나지 않았으며 탈질화의 중간산물인 아산화질소는 미량 검출되었지만 배양 후 모든 질소 화합물을 측정한 결과 약 42.8%가 $N_2$로 전환된 것으로 추정되었다. 탈질화는 PCR 증폭을 통해서 탈질화에 관여하는 유전자 nitrate reductase gene, napA과 nitrous oxide reductase gene, nosZ의 존재로 뒷받침되었다. 또한 배지 내 질소의 46.4%가 NS13 균주로 동화되었기 때문에 폐수처리 시 질산화 및 탈질화 후에 슬러지로 처분한다면 실질적으로 89% 이상의 우수한 암모니움의 제거효과를 거둘 수 있을 것이다.

Nitrogen Removal Comparison in Porous Ceramic Media Packed-Bed Reactors by a Consecutive Nitrification and Denitrification Process

  • Han, Gee-Bong;Woo, Mi-Hee
    • Environmental Engineering Research
    • /
    • 제16권4호
    • /
    • pp.231-236
    • /
    • 2011
  • Biological nitrogen removal, using a continuous flow packed-bed reactor (CPBR) in a consecutive nitrification and denitrification process, was evaluated. An apparent decline in the nitrification efficiency coincided with the steady increase in $NH_4{^+}$-N load. Sustained nitrification efficiency was found to be higher at longer empty bed contact times (EBCTs). The relationship between the rate of alkalinity consumption and $NH_4{^+}$-N utilization ratio followed zero-order reaction kinetics. The heterotrophic denitrification rate at a carbon-tonitrogen (C/N) ratio of >4 was found to be >74%. This rate was higher by a factor of 8.5 or 8.9 for $NO_3{^-}$-N/volatile solids (VS)/day or $NO_3{^-}-N/m^3$ ceramic media/day, respectively, relative to the rates measured at a C/N ratio of 1.1. Autotrophic denitrification efficiencies were 80-90%. It corresponds to an average denitrification rate of 0.96 kg $NO_3{^-}-N/m^3$ ceramic media/day and a relevant average denitrification rate of 0.28 g $NO_3{^-}$-N/g VS/day, were also obtained. Results presented here also constitute the usability of an innovative porous sulfur ceramic media. This enhanced the dissolution rate of elemental sulfur via a higher contact surface area.

Effect of Ammonium Concentration on the Emission of $N_2O$ Under Oxygen-Limited Autotrophic Wastewater Nitrification

  • Kim, Dong-Jin;Kim, Yu-Ri
    • Journal of Microbiology and Biotechnology
    • /
    • 제21권9호
    • /
    • pp.988-994
    • /
    • 2011
  • A significant amount of nitrous oxide ($N_2O$), which is one of the serious greenhouse gases, is emitted from nitrification and denitrification of wastewater. Batch wastewater nitrifications with enriched nitrifiers were carried out under oxygen-limited condition with synthetic (without organic carbon) and real wastewater (with organic carbon) in order to find out the effect of ammonium concentration on $N_2O$ emission. Cumulated $N_2O$-N emission reached 3.0, 5.7, 6.2, and 13.5 mg from 0.4 l of the synthetic wastewater with 50, 100, 200, and 500 mg/l ${NH_4}^+$-N, respectively, and 1.0 mg from the real wastewater with 125 mg/l ${NH_4}^+$-N. The results indicate that $N_2O$ emission increased with ammonium concentration and the load. The ammonium removal rate and nitrite concentration also increased $N_2O$ emission. Comparative analysis of $N_2O$ emission from synthetic and real wastewaters revealed that wastewater nitrification under oxygen-limited condition emitted more $N_2O$ than that of heterotrophic denitrification. Summarizing the results, it can be concluded that denitrification by autotrophic nitrifiers contributes significantly to the $N_2O$ emission from wastewater nitrification.

다공성 담체를 이용한 유동상 및 하이브리드 반응기에서의 질소제거 (Nitrogen Removal in Fluidized Bed and Hybrid Reactor using Porous Media)

  • 전병희
    • 대한환경공학회지
    • /
    • 제27권5호
    • /
    • pp.542-548
    • /
    • 2005
  • 부착 미생물을 이용한 다공성 담체 유동상 반응기는 하폐수중의 유기물 및 질소제거에 많이 적용되어져 왔다. 특히 생물막이 형성된 담체에서는 호기, 무산소 그리고 혐기영역이 공존하여 동시적 질산화/탈질 반응에 의한 질소제거에 유리한 환경이 제공된다고 알려져 있다. 이러한 반응을 활성화시키기 위해서는 담체표면과 내부에서 산소와 유기물등의 적절한 기질확산이 이루어져야 한다. 그러나 하폐수중의 유기물농도나 생물막의 마찰조건등 운전조건에 따라서는 표면에서의 종속영양균의 과잉성장에 의해 질소 제거 반응이 저해되기도 한다. 다공성 담체 유동상 반응기에 막모듈을 결합시킨 하이브리드 반응기는 단일조내에서 활성화된 동시적 질산화/탈질 반응으로 종래의 유동상 반응기에 비해 30% 이상 질소제거 효율이 증가하였다. 미소전극 연구를 통해 담체내부의 탈질율을 조사할 수 있으며 유동상 반응기에 비하여 하이브리드 반응기내 담체내부에서는 탈질반응에 대한 유기물의 확산에 대한 제한인자가 작으며 따라서 보다 높은 탈질율을 유지할 수 있음을 보였다.

Stability of Partial Nitrification and Microbial Population Dynamics in a Bioaugmented Membrane Bioreactor

  • Zhang, Yunxia;Xu, Yanli;Jia, Ming;Zhou, Jiti;Yuan, Shouzhi;Zhang, Jinsong;Zhang, Zhen-Peng
    • Journal of Microbiology and Biotechnology
    • /
    • 제19권12호
    • /
    • pp.1656-1664
    • /
    • 2009
  • Bioaugmentation of bioreactors focuses on the removal of numerous organics, with little attention typically paid to the maintenance of high and stable nitrite accumulation in partial nitrification. In this study, a bioaugmented membrane bioreactor (MBR) inoculated with enriched ammonia-oxidizing bacteria (AOB) was developed, and the effects of dissolved oxygen (DO) and temperature on the stability of partial nitrification and microbial community structure, in particular on the nitrifying community, were evaluated. The results showed that DO and temperature played the most important roles in the stability of partial nitrification in the bioaugmented MBR. The optimal operation conditions were found at 2-3 mgDO/l and $30^{\circ}C$, achieving 95% ammonia oxidization efficiency and nitrite ratio ($NO_2^-/{NO_x}^-$) of 0.95. High DO (5-6 mg/l) and low temperature ($20^{\circ}C$) had negative impacts on nitrite accumulation, leading to nitrite ratio drop to 0.6. However, the nitrite ratio achieved in the bioaugmented MBR was higher than that in most previous literatures. Denaturing gradient gel electrophoresis (DGGE) and fluorescence in situ hybridization (FISH) were used to provide an insight into the microbial community. It showed that Nitrosomonas-like species as the only detected AOB remained predominant in the bioaugmented MBR all the time, and coexisted with numerous heterotrophic bacteria. The heterotrophic bacteria responsible for mineralizing soluble microbial products (SMP) produced by nitrifiers belonged to the Cytophaga-Flavobacterium-Bacteroides (CFB) group, and $\alpha$-, $\beta$-, and $\gamma$- Proteobacteria. The fraction of AOB ranging from 77% to 54% was much higher than that of nitrite-oxidizing bacteria (0.4-0.9%), which might be the primary cause for the high and stable nitrite accumulation in the bioaugmented MBR.

생물학적 영양염류 제거를 위한 돈사폐수의 반응 특성 (Reaction Characteristics of Piggery Wastewater for Biological Nutrient Removal)

  • 한동준;류재근;임연택;임재명
    • 환경위생공학
    • /
    • 제13권1호
    • /
    • pp.44-56
    • /
    • 1998
  • This study was performed to investigate the reaction characteristics of piggery wastewater for biological nutrient removal. The reaction characteristics were discussed the fraction of organics, the behavior of nitrogen, nitrification, denitrification, and the behavior of phosphorus. The fraction of readily biodegradable soluble COD was 11-12 percent. The ammonia nitrogen was removed via stripping, nitrification, autotrophic cell synthesis, and heterotrophic cell synthesis. The removal percents by each step were 12.1%, 68.9%, 15.0%, and 4.0%, respectively. Nitrification inhibition of piggery wastewater was found to occur at an influent volumetric loading rate over 0.2 NH$_{3}$-N kg/m$^{3}$/d. Denitrification rates were the highest in the raw wastewater and the lowest in the anaerobic effluent. The denitritation of piggery wastewater came out to be possible, and the rate of organic carbon consumption decreased about 10 percent. The phosphorus removed was released in the form of ortho-p in the aerobic fixed biofilm reactor, it was caused by autooxidation. The synthesis and release of phosphorus were related to the ORP and the boundary value for the phase change was about 170mV. In the synthesis phase, the phosphorus removal rate per COD removed was 0.023mgP$_{syn}$/mgCOD$_{rem}$. The phosphorus contents of the microorganism were 4.3-6.0% on a dry weight basis.

  • PDF