• Title/Summary/Keyword: heteropolysaccharide

Search Result 23, Processing Time 0.032 seconds

Production of heteropolysaccharide-7 by Beijerinckia indica HS-2001 with continuous culture

  • Yang, Jae-Gyun;Seo, Hyeong-Pil;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.249-252
    • /
    • 2003
  • Maximal production of heteropolysaccharide-7(PS-7) with a batch culture for 48 hr was $10.0\;g/{\ell}$ and its conversion rate from 2% (w/v) glucose to PS-7 was 50%. After substitution of media, production of PS-7 continued and reached its maximal production. The highest productivity occurred when the fresh medium, which contained all ingredients, for the production of PS-7 was substituted. Higher production of PS-7 was maintained at a dilution rate of 0.0125, which was established as the optimal dilution rate for the production of PS-7 by B. indica HS-2001.

  • PDF

Optimization of the Medium Composition for Heteropolysaccharide-7 Production by Beijerinckia indica L3 Using Response Surface Methodology (표면반응방법을 이용한 Beijerinckia indica L3에 의한 PS-7 생산 최적화)

  • Ra, Chae-Hun;Kim, Ki-Myong;Hoe, Pil-Woo;Choi, Mi-Ran;Kim, Sung-Koo
    • Journal of Life Science
    • /
    • v.18 no.2
    • /
    • pp.162-166
    • /
    • 2008
  • The production of heteropolysaccharide-7 (PS-7) by Beijerinckia indica (B. indica L3) was evaluated in shaker flask culture. The medium optimization was studied using response surface methodology (RSM). A five-level three-factor central composite design was employed to determine the maximum PS-7 yield at optimum levels for whey lactose, glucose and ammonium nitrate contents. The validity of the model could be determined by the regression coefficient, $R^2$. The values of $R^2$ were 0.72, 0.64 and 0.85 in PS-7, DCW and viscosity, respectively. The optimal medium combinations of whey lactose, glucose and ammonium nitrate concentrations on the PS-7 production were whey lactose (2%), glucose (1 %) and ammonium nitrate 5 mM, respectively. The result indicated that PS-7 production was affected significantly by the addition of glucose to whey lactose based on medium and C/N ratio.

Characterization of a Cell Aggregation Factor from Aspergillus sp.LAM 94-142 (Aspergillus sp. LAM 94-142가 생산하는 세포응집물질의 특성)

  • 이동희;함동수
    • Microbiology and Biotechnology Letters
    • /
    • v.23 no.5
    • /
    • pp.506-512
    • /
    • 1995
  • A cell aggregation factor produced by Aspergillus sp. LAM 94-142 was purified and partially characterized. The factor was purified about 15 folds from culture broth by IRA 420 and IRC 120 treatment, 1% NaCl added acetone precipitation, and Sepharose 4B column chromatography with overall yield of 48%. It was heteropolysaccharide consisted of mannose, arabinose, and glucose with a molar ratio, 31:17:2, and its molecular weight was estimated to be about 900,000 daltons by Sepharodse 4B gel filtration method. The optimum pH and temperature was 8 and 40$\circ$C, respectively. The factor was stable in pH range of 3-9 and at 100$\circ$C for 90 min. The cell aggregation activity of the factor was inhibited by the addition of Hg$^{2+}$, Fe$^{2+}$, Cu$^{2+}$, and some polypeptides such as milk casein or hemoglobin. The factor aggregated Bacillus subtilis, B. macerans, B. turingiensis, E. coli, Peudomonas aeruginosa, P. fluorescens, P. malophilia, and weakly aggregated Staphylococcus sp., Sarcina lutea, P. putida and Cryptococcus neoformnans, but it didn't aggregate various strains of Candida sp. and Saccharomyces sp.

  • PDF

Optimization of C/N ratio for production of heteropolysaccharide-7 by Beijerinckia indica

  • Kim, Hyeon-Suk;Lee, Nam-Gyu;Lee, Yu-Jeong;Sin, Myeong-Gyo;Jeong, Jeong-Han;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.384-387
    • /
    • 2000
  • Heteropolysaccharide-7 (PS-7) was produced by Beijerinckia indica HS-2001 under aerobic condition. Production of PS-7 was investigated under various ratios of glucose as carbon source to ammonium nitrate as nitrogen source. Maximal production of PS-7 was 7.13 g/l when concentrations of glucose and ammonium nitrate were 10 g/l and 0.3 g/l, respectively. But its conversion rate from glucose was as low as 7 %. The highest conversion rate of PS-7 was 46% when those of glucose and ammonium nitrate were 1.0 g/l and 0.3 g/l, respectively.

  • PDF

Optimization of Heteropolysaccharide-7 Production by Beijerinckia Indica (Beijerinckia Indica 배양을 통한 Heteropolysaccharide-7 생산 최적화)

  • Wu Jian-Rong;Son Jeong Hwa;Kim Ki Myong;Nam Soo-Wan;Lee Jin-Woo;Kim Sung-Koo
    • Microbiology and Biotechnology Letters
    • /
    • v.33 no.2
    • /
    • pp.117-122
    • /
    • 2005
  • Beijerinckia indica was cultured in mineral salts medium (MSM) medium with various carbon and nitrogen sources to improve the production yield of heteropolysaccharide-7 (PS-7). At high C/N ratio, the high concentration of PS-7 was produced until 40 h of the culture, whereas most of the glucose as a carbon source was used for the cell growth at low C/N ratio. However, at the high C/N ratio, PS-7 accumulation stopped at 48 h of the culture due to the increasing viscosity of the culture broth would inhibit the cell growth. Therefore, the optimized value of C/N ratio was 33.3 (20 g/L glucose, 7.5 mM $NH_{4}NO_3$) for the high production of PS-7. In the culture with various carbon sources, B. indica effectively used the hexoses or glucose-generating sugars for PS-7 formation. Especially, sucrose was the best carbon source for the high production of PS-7 (6.96 g/L) with a high viscosity (40772 cp). In the culture of B. indica with MSM medium containing 20 g/L glucose and 7.5 mM $NH_{4}NO_3$ in a 51 fermentor, the highest cell concentration was 2.5 g/L and the highest concentration of PS-7 was 7.5 g/L (35174 cp). The additional nitrogen sources of 7.5 mM $NH_{4}NO_3$, glutamine and glutamate at 12 h of the culture after exhaustion of a nitrogen source regulated the metabolism of carbon sources, therefore the nitrogen sources could control PS-7 synthesis.

Effect of the aeration rate and agitation speed on heteropolysaccharide-7 production by Beijerinckia indica

  • Jin, Hyeok;Yang, Jae-Gyun;Jeong, Jeong-Han;Jo, Yeong-Su;Lee, Dong-Su;Sin, Myeong-Gyo;Lee, Jin-U
    • 한국생물공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.192-195
    • /
    • 2002
  • Effect of aeration rate and agitation speed on cell growth and the production of heteropolysaccharide-7 (PS-7) by Beijerinckia indica was investigated. Aeration rate and agitation speed in a 7L bioreactor ranged from 0.5 to 1.5 vvm and from 300 to 500 rpm, respectively. Higher agitation speed with an aeration rate of 0.5 vvm in the bioreactor resulted in maintenance of higher concentration of dissolved oxygen in the medium, which enhanced the production of PS-7. In this study with a 7L bioreactor, maximal production of PS-7 was 11.0 g/L and its conversion rate from 2% (w/v) glucose was 0.55 when the aeration rate and agitation speed were 1.0 vvm and 500 rpm, respectively. Proper aeration rate and agitation speed might enhance the production of PS-7 as well as reduce the time to reach maximal production.

  • PDF

Isolation and Characterization of Exopolysaccharide-Producing Bacteria from Korean Fermented Vegetables (전통 침채류 유래 다당 생산균의 분리 특성)

  • Kwon, Tae-Yeon;Shim, Sang-Min;Heo, Min-Young;An, Doo-Hyun;Shin, Kwang-Soon;Lee, Jong-Hoon
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.191-195
    • /
    • 2007
  • Four bacteria producing viscous exopolysaccharides (EPSs) were isolated from Korean fermented vegetables (Cucumber kimchi, Young radish kimchi, Green onion kimchi) using a selection medium intended for isolating bacteria with tannin-degrading activity. They were identified phylogenetically by 16S rDNA sequence analysis and found to be very close to Enterobacter cowan ii, Escherichia senegalensis, Enterobacter asburiae, and Enterobacter ludwigii. Strain CK31, the most efficient EPS-producer, produced a heteropolysaccharide with an approximate molecular weight of 420 kDa. The neutral sugar fraction of the EPS was composed of rhamnose, fucose, arabinose, mannose, galactose, and glucose.